Factors associated with decreased total and cause-specific maternal mortality in Eastern and Western China during 2004–2012, using Bayesian Kernel Machine Regression hierarchical variable selection with missing data imputed by MICE. Article Swipe
Xiaojing Zeng (2577715)
,
Dongjian Yang (8923223)
,
Shiyang Li (4096573)
,
Xiaolin Hua (608523)
,
Yanlin Wang (110566)
,
Jun Zhang (48506)
,
Zhiwei Liu (151279)
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pmed.1004837.s028
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pmed.1004837.s028
Note: The asterisk * and dagger † symbols in the cell represent that the factor contributes the most to the exposure–response relationship when all other factors are fixed at their 25th and 75th percentiles, respectively. White cell means that the factor is not identified as the component associated with reduced maternal mortality in the mixture. CMD, coexisting medical diseases; HDP, hypertensive disorders in pregnancy; PCDI, per capita. (TIFF)
Related Topics
Concepts
Missing data
Statistics
Feature selection
Logistic regression
Bayesian probability
Selection (genetic algorithm)
Factor analysis
Regression
Econometrics
Principal component analysis
Regression analysis
Mathematics
Linear regression
Kernel (algebra)
Kernel density estimation
Computer science
Factor regression model
Imputation (statistics)
Variable (mathematics)
China
Risk factor
Kernel method
Component (thermodynamics)
Metadata
- Type
- other
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111422986
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111422986Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pmed.1004837.s028Digital Object Identifier
- Title
-
Factors associated with decreased total and cause-specific maternal mortality in Eastern and Western China during 2004–2012, using Bayesian Kernel Machine Regression hierarchical variable selection with missing data imputed by MICE.Work title
- Type
-
otherOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-04Full publication date if available
- Authors
-
Xiaojing Zeng (2577715), Dongjian Yang (8923223), Shiyang Li (4096573), Xiaolin Hua (608523), Yanlin Wang (110566), Jun Zhang (48506), Zhiwei Liu (151279)List of authors in order
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- Concepts
-
Missing data, Statistics, Feature selection, Logistic regression, Bayesian probability, Selection (genetic algorithm), Factor analysis, Regression, Econometrics, Principal component analysis, Regression analysis, Mathematics, Linear regression, Kernel (algebra), Kernel density estimation, Computer science, Factor regression model, Imputation (statistics), Variable (mathematics), China, Risk factor, Kernel method, Component (thermodynamics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111422986 |
|---|---|
| doi | https://doi.org/10.1371/journal.pmed.1004837.s028 |
| ids.openalex | https://openalex.org/W7111422986 |
| fwci | |
| type | other |
| title | Factors associated with decreased total and cause-specific maternal mortality in Eastern and Western China during 2004–2012, using Bayesian Kernel Machine Regression hierarchical variable selection with missing data imputed by MICE. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6973801851272583 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5508038997650146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C148483581 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5354400277137756 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[2].display_name | Feature selection |
| concepts[3].id | https://openalex.org/C151956035 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5166280269622803 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[3].display_name | Logistic regression |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49798110127449036 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C81917197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46923404932022095 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[5].display_name | Selection (genetic algorithm) |
| concepts[6].id | https://openalex.org/C10879293 |
| concepts[6].level | 2 |
| concepts[6].score | 0.37981116771698 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q726474 |
| concepts[6].display_name | Factor analysis |
| concepts[7].id | https://openalex.org/C83546350 |
| concepts[7].level | 2 |
| concepts[7].score | 0.37706342339515686 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[7].display_name | Regression |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35972151160240173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C27438332 |
| concepts[9].level | 2 |
| concepts[9].score | 0.35489341616630554 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[9].display_name | Principal component analysis |
| concepts[10].id | https://openalex.org/C152877465 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3522413969039917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[10].display_name | Regression analysis |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3471938371658325 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C48921125 |
| concepts[12].level | 2 |
| concepts[12].score | 0.336580753326416 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[12].display_name | Linear regression |
| concepts[13].id | https://openalex.org/C74193536 |
| concepts[13].level | 2 |
| concepts[13].score | 0.32525742053985596 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[13].display_name | Kernel (algebra) |
| concepts[14].id | https://openalex.org/C71134354 |
| concepts[14].level | 3 |
| concepts[14].score | 0.32240206003189087 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[14].display_name | Kernel density estimation |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.315935879945755 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C93698799 |
| concepts[16].level | 5 |
| concepts[16].score | 0.2939043641090393 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5428730 |
| concepts[16].display_name | Factor regression model |
| concepts[17].id | https://openalex.org/C58041806 |
| concepts[17].level | 3 |
| concepts[17].score | 0.29251617193222046 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[17].display_name | Imputation (statistics) |
| concepts[18].id | https://openalex.org/C182365436 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2859174311161041 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[18].display_name | Variable (mathematics) |
| concepts[19].id | https://openalex.org/C191935318 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2804504632949829 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[19].display_name | China |
| concepts[20].id | https://openalex.org/C50440223 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2632233500480652 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1475848 |
| concepts[20].display_name | Risk factor |
| concepts[21].id | https://openalex.org/C122280245 |
| concepts[21].level | 3 |
| concepts[21].score | 0.25541090965270996 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[21].display_name | Kernel method |
| concepts[22].id | https://openalex.org/C168167062 |
| concepts[22].level | 2 |
| concepts[22].score | 0.25261351466178894 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[22].display_name | Component (thermodynamics) |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.6973801851272583 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.5354400277137756 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.5166280269622803 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.49798110127449036 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/selection |
| keywords[4].score | 0.46923404932022095 |
| keywords[4].display_name | Selection (genetic algorithm) |
| keywords[5].id | https://openalex.org/keywords/factor-analysis |
| keywords[5].score | 0.37981116771698 |
| keywords[5].display_name | Factor analysis |
| keywords[6].id | https://openalex.org/keywords/regression |
| keywords[6].score | 0.37706342339515686 |
| keywords[6].display_name | Regression |
| keywords[7].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[7].score | 0.35489341616630554 |
| keywords[7].display_name | Principal component analysis |
| language | |
| locations[0].id | pmh:oai:figshare.com:article/30793666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400572 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[0].source.host_organization | https://openalex.org/I196829312 |
| locations[0].source.host_organization_name | La Trobe University |
| locations[0].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Figure |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiaojing Zeng (2577715) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaojing Zeng (2577715) |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dongjian Yang (8923223) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dongjian Yang (8923223) |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shiyang Li (4096573) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shiyang Li (4096573) |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaolin Hua (608523) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaolin Hua (608523) |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yanlin Wang (110566) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanlin Wang (110566) |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jun Zhang (48506) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jun Zhang (48506) |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zhiwei Liu (151279) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhiwei Liu (151279) |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Factors associated with decreased total and cause-specific maternal mortality in Eastern and Western China during 2004–2012, using Bayesian Kernel Machine Regression hierarchical variable selection with missing data imputed by MICE. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:figshare.com:article/30793666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Figure |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | |
| primary_location.id | pmh:oai:figshare.com:article/30793666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400572 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| primary_location.source.host_organization | https://openalex.org/I196829312 |
| primary_location.source.host_organization_name | La Trobe University |
| primary_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Figure |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | |
| publication_date | 2025-12-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.* | 3 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.at | 28 |
| abstract_inverted_index.in | 8, 52, 62 |
| abstract_inverted_index.is | 41 |
| abstract_inverted_index.to | 18 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.all | 23 |
| abstract_inverted_index.and | 4, 31 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.not | 42 |
| abstract_inverted_index.per | 65 |
| abstract_inverted_index.the | 9, 13, 16, 19, 39, 45, 53 |
| abstract_inverted_index.† | 6 |
| abstract_inverted_index.25th | 30 |
| abstract_inverted_index.75th | 32 |
| abstract_inverted_index.CMD, | 55 |
| abstract_inverted_index.HDP, | 59 |
| abstract_inverted_index.cell | 10, 36 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.that | 12, 38 |
| abstract_inverted_index.when | 22 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.Note: | 0 |
| abstract_inverted_index.PCDI, | 64 |
| abstract_inverted_index.White | 35 |
| abstract_inverted_index.fixed | 27 |
| abstract_inverted_index.means | 37 |
| abstract_inverted_index.other | 24 |
| abstract_inverted_index.their | 29 |
| abstract_inverted_index.(TIFF) | 67 |
| abstract_inverted_index.dagger | 5 |
| abstract_inverted_index.factor | 14, 40 |
| abstract_inverted_index.capita. | 66 |
| abstract_inverted_index.factors | 25 |
| abstract_inverted_index.medical | 57 |
| abstract_inverted_index.reduced | 49 |
| abstract_inverted_index.symbols | 7 |
| abstract_inverted_index.asterisk | 2 |
| abstract_inverted_index.maternal | 50 |
| abstract_inverted_index.mixture. | 54 |
| abstract_inverted_index.component | 46 |
| abstract_inverted_index.diseases; | 58 |
| abstract_inverted_index.disorders | 61 |
| abstract_inverted_index.mortality | 51 |
| abstract_inverted_index.represent | 11 |
| abstract_inverted_index.associated | 47 |
| abstract_inverted_index.coexisting | 56 |
| abstract_inverted_index.identified | 43 |
| abstract_inverted_index.pregnancy; | 63 |
| abstract_inverted_index.contributes | 15 |
| abstract_inverted_index.hypertensive | 60 |
| abstract_inverted_index.percentiles, | 33 |
| abstract_inverted_index.relationship | 21 |
| abstract_inverted_index.respectively. | 34 |
| abstract_inverted_index.exposure–response | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |