Fair Rank Aggregation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.10499
Ranking algorithms find extensive usage in diverse areas such as web search, employment, college admission, voting, etc. The related rank aggregation problem deals with combining multiple rankings into a single aggregate ranking. However, algorithms for both these problems might be biased against some individuals or groups due to implicit prejudice or marginalization in the historical data. We study ranking and rank aggregation problems from a fairness or diversity perspective, where the candidates (to be ranked) may belong to different groups and each group should have a fair representation in the final ranking. We allow the designer to set the parameters that define fair representation. These parameters specify the allowed range of the number of candidates from a particular group in the top-$k$ positions of the ranking. Given any ranking, we provide a fast and exact algorithm for finding the closest fair ranking for the Kendall tau metric under block-fairness. We also provide an exact algorithm for finding the closest fair ranking for the Ulam metric under strict-fairness, when there are only $O(1)$ number of groups. Our algorithms are simple, fast, and might be extendable to other relevant metrics. We also give a novel meta-algorithm for the general rank aggregation problem under the fairness framework. Surprisingly, this meta-algorithm works for any generalized mean objective (including center and median problems) and any fairness criteria. As a byproduct, we obtain 3-approximation algorithms for both center and median problems, under both Kendall tau and Ulam metrics. Furthermore, using sophisticated techniques we obtain a $(3-\varepsilon)$-approximation algorithm, for a constant $\varepsilon>0$, for the Ulam metric under strong fairness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.10499
- https://arxiv.org/pdf/2308.10499
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386081452
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386081452Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.10499Digital Object Identifier
- Title
-
Fair Rank AggregationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-21Full publication date if available
- Authors
-
Diptarka Chakraborty, Syamantak Das, Arindam Khan, Aditya SubramanianList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.10499Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.10499Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.10499Direct OA link when available
- Concepts
-
Ranking (information retrieval), Metric (unit), Rank (graph theory), Learning to rank, Representation (politics), Voting, Aggregate (composite), Ranking SVM, Set (abstract data type), Computer science, Mathematics, Theoretical computer science, Algorithm, Machine learning, Combinatorics, Operations management, Political science, Law, Economics, Composite material, Politics, Programming language, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386081452 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.10499 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.10499 |
| ids.openalex | https://openalex.org/W4386081452 |
| fwci | |
| type | preprint |
| title | Fair Rank Aggregation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10991 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Game Theory and Voting Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C189430467 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8301756978034973 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[0].display_name | Ranking (information retrieval) |
| concepts[1].id | https://openalex.org/C176217482 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6408053040504456 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[1].display_name | Metric (unit) |
| concepts[2].id | https://openalex.org/C164226766 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6324552893638611 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[2].display_name | Rank (graph theory) |
| concepts[3].id | https://openalex.org/C86037889 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5487428903579712 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4330127 |
| concepts[3].display_name | Learning to rank |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5261698961257935 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C520049643 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5221496224403381 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189760 |
| concepts[5].display_name | Voting |
| concepts[6].id | https://openalex.org/C4679612 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5181137919425964 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q866298 |
| concepts[6].display_name | Aggregate (composite) |
| concepts[7].id | https://openalex.org/C124975894 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5138469338417053 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7293290 |
| concepts[7].display_name | Ranking SVM |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5042136907577515 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4683847725391388 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.43990078568458557 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.42557236552238464 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35583916306495667 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.29036855697631836 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2100011110305786 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C21547014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[15].display_name | Operations management |
| concepts[16].id | https://openalex.org/C17744445 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[16].display_name | Political science |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C159985019 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[19].display_name | Composite material |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C192562407 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[22].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/ranking |
| keywords[0].score | 0.8301756978034973 |
| keywords[0].display_name | Ranking (information retrieval) |
| keywords[1].id | https://openalex.org/keywords/metric |
| keywords[1].score | 0.6408053040504456 |
| keywords[1].display_name | Metric (unit) |
| keywords[2].id | https://openalex.org/keywords/rank |
| keywords[2].score | 0.6324552893638611 |
| keywords[2].display_name | Rank (graph theory) |
| keywords[3].id | https://openalex.org/keywords/learning-to-rank |
| keywords[3].score | 0.5487428903579712 |
| keywords[3].display_name | Learning to rank |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5261698961257935 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/voting |
| keywords[5].score | 0.5221496224403381 |
| keywords[5].display_name | Voting |
| keywords[6].id | https://openalex.org/keywords/aggregate |
| keywords[6].score | 0.5181137919425964 |
| keywords[6].display_name | Aggregate (composite) |
| keywords[7].id | https://openalex.org/keywords/ranking-svm |
| keywords[7].score | 0.5138469338417053 |
| keywords[7].display_name | Ranking SVM |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.5042136907577515 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4683847725391388 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.43990078568458557 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.42557236552238464 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.35583916306495667 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.29036855697631836 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.2100011110305786 |
| keywords[14].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.10499 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.10499 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.10499 |
| locations[1].id | doi:10.48550/arxiv.2308.10499 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.10499 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024602075 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0687-5823 |
| authorships[0].author.display_name | Diptarka Chakraborty |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chakraborty, Diptarka |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082853347 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4393-8678 |
| authorships[1].author.display_name | Syamantak Das |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Das, Syamantak |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085907661 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7505-1687 |
| authorships[2].author.display_name | Arindam Khan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Khan, Arindam |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056872430 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1398-1923 |
| authorships[3].author.display_name | Aditya Subramanian |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Subramanian, Aditya |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.10499 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fair Rank Aggregation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10991 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Game Theory and Voting Systems |
| related_works | https://openalex.org/W3127142483, https://openalex.org/W2138488530, https://openalex.org/W4385565564, https://openalex.org/W2370100764, https://openalex.org/W2031468273, https://openalex.org/W2387658907, https://openalex.org/W2351112195, https://openalex.org/W2898073868, https://openalex.org/W2110822809, https://openalex.org/W2352397247 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.10499 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.10499 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.10499 |
| primary_location.id | pmh:oai:arXiv.org:2308.10499 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.10499 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.10499 |
| publication_date | 2023-08-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28, 64, 85, 116, 131, 191, 223, 248, 252 |
| abstract_inverted_index.As | 222 |
| abstract_inverted_index.We | 56, 92, 149, 188 |
| abstract_inverted_index.an | 152 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.be | 39, 73, 182 |
| abstract_inverted_index.in | 5, 52, 88, 119 |
| abstract_inverted_index.of | 110, 113, 123, 173 |
| abstract_inverted_index.or | 44, 50, 66 |
| abstract_inverted_index.to | 47, 77, 96, 184 |
| abstract_inverted_index.we | 129, 225, 246 |
| abstract_inverted_index.(to | 72 |
| abstract_inverted_index.Our | 175 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.and | 59, 80, 133, 180, 215, 218, 232, 239 |
| abstract_inverted_index.any | 127, 209, 219 |
| abstract_inverted_index.are | 169, 177 |
| abstract_inverted_index.due | 46 |
| abstract_inverted_index.for | 34, 136, 142, 155, 161, 194, 208, 229, 251, 255 |
| abstract_inverted_index.may | 75 |
| abstract_inverted_index.set | 97 |
| abstract_inverted_index.tau | 145, 238 |
| abstract_inverted_index.the | 53, 70, 89, 94, 98, 107, 111, 120, 124, 138, 143, 157, 162, 195, 201, 256 |
| abstract_inverted_index.web | 10 |
| abstract_inverted_index.Ulam | 163, 240, 257 |
| abstract_inverted_index.also | 150, 189 |
| abstract_inverted_index.both | 35, 230, 236 |
| abstract_inverted_index.each | 81 |
| abstract_inverted_index.etc. | 16 |
| abstract_inverted_index.fair | 86, 102, 140, 159 |
| abstract_inverted_index.fast | 132 |
| abstract_inverted_index.find | 2 |
| abstract_inverted_index.from | 63, 115 |
| abstract_inverted_index.give | 190 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.into | 27 |
| abstract_inverted_index.mean | 211 |
| abstract_inverted_index.only | 170 |
| abstract_inverted_index.rank | 19, 60, 197 |
| abstract_inverted_index.some | 42 |
| abstract_inverted_index.such | 8 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.this | 205 |
| abstract_inverted_index.when | 167 |
| abstract_inverted_index.with | 23 |
| abstract_inverted_index.Given | 126 |
| abstract_inverted_index.These | 104 |
| abstract_inverted_index.allow | 93 |
| abstract_inverted_index.areas | 7 |
| abstract_inverted_index.data. | 55 |
| abstract_inverted_index.deals | 22 |
| abstract_inverted_index.exact | 134, 153 |
| abstract_inverted_index.fast, | 179 |
| abstract_inverted_index.final | 90 |
| abstract_inverted_index.group | 82, 118 |
| abstract_inverted_index.might | 38, 181 |
| abstract_inverted_index.novel | 192 |
| abstract_inverted_index.other | 185 |
| abstract_inverted_index.range | 109 |
| abstract_inverted_index.study | 57 |
| abstract_inverted_index.there | 168 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.under | 147, 165, 200, 235, 259 |
| abstract_inverted_index.usage | 4 |
| abstract_inverted_index.using | 243 |
| abstract_inverted_index.where | 69 |
| abstract_inverted_index.works | 207 |
| abstract_inverted_index.$O(1)$ | 171 |
| abstract_inverted_index.belong | 76 |
| abstract_inverted_index.biased | 40 |
| abstract_inverted_index.center | 214, 231 |
| abstract_inverted_index.define | 101 |
| abstract_inverted_index.groups | 45, 79 |
| abstract_inverted_index.median | 216, 233 |
| abstract_inverted_index.metric | 146, 164, 258 |
| abstract_inverted_index.number | 112, 172 |
| abstract_inverted_index.obtain | 226, 247 |
| abstract_inverted_index.should | 83 |
| abstract_inverted_index.single | 29 |
| abstract_inverted_index.strong | 260 |
| abstract_inverted_index.Kendall | 144, 237 |
| abstract_inverted_index.Ranking | 0 |
| abstract_inverted_index.against | 41 |
| abstract_inverted_index.allowed | 108 |
| abstract_inverted_index.closest | 139, 158 |
| abstract_inverted_index.college | 13 |
| abstract_inverted_index.diverse | 6 |
| abstract_inverted_index.finding | 137, 156 |
| abstract_inverted_index.general | 196 |
| abstract_inverted_index.groups. | 174 |
| abstract_inverted_index.problem | 21, 199 |
| abstract_inverted_index.provide | 130, 151 |
| abstract_inverted_index.ranked) | 74 |
| abstract_inverted_index.ranking | 58, 141, 160 |
| abstract_inverted_index.related | 18 |
| abstract_inverted_index.search, | 11 |
| abstract_inverted_index.simple, | 178 |
| abstract_inverted_index.specify | 106 |
| abstract_inverted_index.top-$k$ | 121 |
| abstract_inverted_index.voting, | 15 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.constant | 253 |
| abstract_inverted_index.designer | 95 |
| abstract_inverted_index.fairness | 65, 202, 220 |
| abstract_inverted_index.implicit | 48 |
| abstract_inverted_index.metrics. | 187, 241 |
| abstract_inverted_index.multiple | 25 |
| abstract_inverted_index.problems | 37, 62 |
| abstract_inverted_index.ranking, | 128 |
| abstract_inverted_index.ranking. | 31, 91, 125 |
| abstract_inverted_index.rankings | 26 |
| abstract_inverted_index.relevant | 186 |
| abstract_inverted_index.aggregate | 30 |
| abstract_inverted_index.algorithm | 135, 154 |
| abstract_inverted_index.combining | 24 |
| abstract_inverted_index.criteria. | 221 |
| abstract_inverted_index.different | 78 |
| abstract_inverted_index.diversity | 67 |
| abstract_inverted_index.extensive | 3 |
| abstract_inverted_index.fairness. | 261 |
| abstract_inverted_index.objective | 212 |
| abstract_inverted_index.positions | 122 |
| abstract_inverted_index.prejudice | 49 |
| abstract_inverted_index.problems) | 217 |
| abstract_inverted_index.problems, | 234 |
| abstract_inverted_index.(including | 213 |
| abstract_inverted_index.admission, | 14 |
| abstract_inverted_index.algorithm, | 250 |
| abstract_inverted_index.algorithms | 1, 33, 176, 228 |
| abstract_inverted_index.byproduct, | 224 |
| abstract_inverted_index.candidates | 71, 114 |
| abstract_inverted_index.extendable | 183 |
| abstract_inverted_index.framework. | 203 |
| abstract_inverted_index.historical | 54 |
| abstract_inverted_index.parameters | 99, 105 |
| abstract_inverted_index.particular | 117 |
| abstract_inverted_index.techniques | 245 |
| abstract_inverted_index.aggregation | 20, 61, 198 |
| abstract_inverted_index.employment, | 12 |
| abstract_inverted_index.generalized | 210 |
| abstract_inverted_index.individuals | 43 |
| abstract_inverted_index.Furthermore, | 242 |
| abstract_inverted_index.perspective, | 68 |
| abstract_inverted_index.Surprisingly, | 204 |
| abstract_inverted_index.sophisticated | 244 |
| abstract_inverted_index.meta-algorithm | 193, 206 |
| abstract_inverted_index.representation | 87 |
| abstract_inverted_index.3-approximation | 227 |
| abstract_inverted_index.block-fairness. | 148 |
| abstract_inverted_index.marginalization | 51 |
| abstract_inverted_index.representation. | 103 |
| abstract_inverted_index.strict-fairness, | 166 |
| abstract_inverted_index.$\varepsilon>0$, | 254 |
| abstract_inverted_index.$(3-\varepsilon)$-approximation | 249 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |