FairLRF: Achieving Fairness through Sparse Low Rank Factorization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.16549
As deep learning (DL) techniques become integral to various applications, ensuring model fairness while maintaining high performance has become increasingly critical, particularly in sensitive fields such as medical diagnosis. Although a variety of bias-mitigation methods have been proposed, many rely on computationally expensive debiasing strategies or suffer substantial drops in model accuracy, which limits their practicality in real-world, resource-constrained settings. To address this issue, we propose a fairness-oriented low rank factorization (LRF) framework that leverages singular value decomposition (SVD) to improve DL model fairness. Unlike traditional SVD, which is mainly used for model compression by decomposing and reducing weight matrices, our work shows that SVD can also serve as an effective tool for fairness enhancement. Specifically, we observed that elements in the unitary matrices obtained from SVD contribute unequally to model bias across groups defined by sensitive attributes. Motivated by this observation, we propose a method, named FairLRF, that selectively removes bias-inducing elements from unitary matrices to reduce group disparities, thus enhancing model fairness. Extensive experiments show that our method outperforms conventional LRF methods as well as state-of-the-art fairness-enhancing techniques. Additionally, an ablation study examines how major hyper-parameters may influence the performance of processed models. To the best of our knowledge, this is the first work utilizing SVD not primarily for compression but for fairness enhancement.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.16549
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106327613
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106327613Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.16549Digital Object Identifier
- Title
-
FairLRF: Achieving Fairness through Sparse Low Rank FactorizationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-20Full publication date if available
- Authors
-
Guo Yuanbo, Xia Jun, Shi, YiyuList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.16549Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.16549Direct OA link when available
- Concepts
-
Singular value decomposition, Debiasing, Computer science, Matrix decomposition, Factorization, Variety (cybernetics), Unitary state, Rank (graph theory), Low-rank approximation, Algorithm, Compression (physics), Decomposition, Sparse matrix, Value (mathematics), Theoretical computer science, Unitary transformation, Singular value, Field (mathematics), Performance improvement, Group (periodic table), Mathematical optimization, Artificial intelligence, Work (physics), Compression ratio, Data compression, Unitary matrix, Learning to rank, Base (topology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106327613 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.16549 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.16549 |
| ids.openalex | https://openalex.org/W7106327613 |
| fwci | 0.0 |
| type | preprint |
| title | FairLRF: Achieving Fairness through Sparse Low Rank Factorization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22789450 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8054243326187134 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q420904 |
| concepts[0].display_name | Singular value decomposition |
| concepts[1].id | https://openalex.org/C2779458634 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7144899368286133 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q24963715 |
| concepts[1].display_name | Debiasing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6869298815727234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C42355184 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6705507040023804 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[3].display_name | Matrix decomposition |
| concepts[4].id | https://openalex.org/C187834632 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5696461200714111 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188804 |
| concepts[4].display_name | Factorization |
| concepts[5].id | https://openalex.org/C136197465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5361322164535522 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[5].display_name | Variety (cybernetics) |
| concepts[6].id | https://openalex.org/C67820243 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5195591449737549 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q179164 |
| concepts[6].display_name | Unitary state |
| concepts[7].id | https://openalex.org/C164226766 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5038803815841675 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[7].display_name | Rank (graph theory) |
| concepts[8].id | https://openalex.org/C90199385 |
| concepts[8].level | 3 |
| concepts[8].score | 0.49301934242248535 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6692777 |
| concepts[8].display_name | Low-rank approximation |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45497414469718933 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C180016635 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41493791341781616 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2712821 |
| concepts[10].display_name | Compression (physics) |
| concepts[11].id | https://openalex.org/C124681953 |
| concepts[11].level | 2 |
| concepts[11].score | 0.40098798274993896 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[11].display_name | Decomposition |
| concepts[12].id | https://openalex.org/C56372850 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3765644431114197 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[12].display_name | Sparse matrix |
| concepts[13].id | https://openalex.org/C2776291640 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3485617935657501 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[13].display_name | Value (mathematics) |
| concepts[14].id | https://openalex.org/C80444323 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3441024422645569 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[14].display_name | Theoretical computer science |
| concepts[15].id | https://openalex.org/C179371143 |
| concepts[15].level | 3 |
| concepts[15].score | 0.34290048480033875 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2495534 |
| concepts[15].display_name | Unitary transformation |
| concepts[16].id | https://openalex.org/C109282560 |
| concepts[16].level | 3 |
| concepts[16].score | 0.33868733048439026 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4166054 |
| concepts[16].display_name | Singular value |
| concepts[17].id | https://openalex.org/C9652623 |
| concepts[17].level | 2 |
| concepts[17].score | 0.31245648860931396 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[17].display_name | Field (mathematics) |
| concepts[18].id | https://openalex.org/C2778915421 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3121951222419739 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3643177 |
| concepts[18].display_name | Performance improvement |
| concepts[19].id | https://openalex.org/C2781311116 |
| concepts[19].level | 2 |
| concepts[19].score | 0.30703940987586975 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[19].display_name | Group (periodic table) |
| concepts[20].id | https://openalex.org/C126255220 |
| concepts[20].level | 1 |
| concepts[20].score | 0.305315762758255 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[20].display_name | Mathematical optimization |
| concepts[21].id | https://openalex.org/C154945302 |
| concepts[21].level | 1 |
| concepts[21].score | 0.2965054512023926 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[21].display_name | Artificial intelligence |
| concepts[22].id | https://openalex.org/C18762648 |
| concepts[22].level | 2 |
| concepts[22].score | 0.28938835859298706 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[22].display_name | Work (physics) |
| concepts[23].id | https://openalex.org/C25797200 |
| concepts[23].level | 3 |
| concepts[23].score | 0.2815631628036499 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q828137 |
| concepts[23].display_name | Compression ratio |
| concepts[24].id | https://openalex.org/C78548338 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2664998471736908 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[24].display_name | Data compression |
| concepts[25].id | https://openalex.org/C96214315 |
| concepts[25].level | 3 |
| concepts[25].score | 0.26481354236602783 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q727103 |
| concepts[25].display_name | Unitary matrix |
| concepts[26].id | https://openalex.org/C86037889 |
| concepts[26].level | 3 |
| concepts[26].score | 0.258963406085968 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q4330127 |
| concepts[26].display_name | Learning to rank |
| concepts[27].id | https://openalex.org/C42058472 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2512425184249878 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[27].display_name | Base (topology) |
| keywords[0].id | https://openalex.org/keywords/singular-value-decomposition |
| keywords[0].score | 0.8054243326187134 |
| keywords[0].display_name | Singular value decomposition |
| keywords[1].id | https://openalex.org/keywords/debiasing |
| keywords[1].score | 0.7144899368286133 |
| keywords[1].display_name | Debiasing |
| keywords[2].id | https://openalex.org/keywords/matrix-decomposition |
| keywords[2].score | 0.6705507040023804 |
| keywords[2].display_name | Matrix decomposition |
| keywords[3].id | https://openalex.org/keywords/factorization |
| keywords[3].score | 0.5696461200714111 |
| keywords[3].display_name | Factorization |
| keywords[4].id | https://openalex.org/keywords/variety |
| keywords[4].score | 0.5361322164535522 |
| keywords[4].display_name | Variety (cybernetics) |
| keywords[5].id | https://openalex.org/keywords/unitary-state |
| keywords[5].score | 0.5195591449737549 |
| keywords[5].display_name | Unitary state |
| keywords[6].id | https://openalex.org/keywords/rank |
| keywords[6].score | 0.5038803815841675 |
| keywords[6].display_name | Rank (graph theory) |
| keywords[7].id | https://openalex.org/keywords/low-rank-approximation |
| keywords[7].score | 0.49301934242248535 |
| keywords[7].display_name | Low-rank approximation |
| keywords[8].id | https://openalex.org/keywords/compression |
| keywords[8].score | 0.41493791341781616 |
| keywords[8].display_name | Compression (physics) |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.16549 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.16549 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A2053926209 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Guo Yuanbo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guo, Yuanbo |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2168801537 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7295-5429 |
| authorships[1].author.display_name | Xia Jun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xia, Jun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2350148245 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shi, Yiyu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shi, Yiyu |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.16549 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-23T00:00:00 |
| display_name | FairLRF: Achieving Fairness through Sparse Low Rank Factorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:13:22.807545 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.16549 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.16549 |
| primary_location.id | doi:10.48550/arxiv.2511.16549 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.16549 |
| publication_date | 2025-11-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 66, 144 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.DL | 81 |
| abstract_inverted_index.To | 60, 195 |
| abstract_inverted_index.an | 109, 181 |
| abstract_inverted_index.as | 26, 108, 174, 176 |
| abstract_inverted_index.by | 94, 135, 139 |
| abstract_inverted_index.in | 22, 49, 56, 120 |
| abstract_inverted_index.is | 88, 202 |
| abstract_inverted_index.of | 32, 192, 198 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.or | 45 |
| abstract_inverted_index.to | 7, 79, 129, 156 |
| abstract_inverted_index.we | 64, 116, 142 |
| abstract_inverted_index.LRF | 172 |
| abstract_inverted_index.SVD | 104, 126, 207 |
| abstract_inverted_index.and | 96 |
| abstract_inverted_index.but | 212 |
| abstract_inverted_index.can | 105 |
| abstract_inverted_index.for | 91, 112, 210, 213 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.how | 185 |
| abstract_inverted_index.low | 68 |
| abstract_inverted_index.may | 188 |
| abstract_inverted_index.not | 208 |
| abstract_inverted_index.our | 100, 168, 199 |
| abstract_inverted_index.the | 121, 190, 196, 203 |
| abstract_inverted_index.(DL) | 3 |
| abstract_inverted_index.SVD, | 86 |
| abstract_inverted_index.also | 106 |
| abstract_inverted_index.been | 36 |
| abstract_inverted_index.best | 197 |
| abstract_inverted_index.bias | 131 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.from | 125, 153 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.high | 15 |
| abstract_inverted_index.many | 38 |
| abstract_inverted_index.rank | 69 |
| abstract_inverted_index.rely | 39 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.that | 73, 103, 118, 148, 167 |
| abstract_inverted_index.this | 62, 140, 201 |
| abstract_inverted_index.thus | 160 |
| abstract_inverted_index.tool | 111 |
| abstract_inverted_index.used | 90 |
| abstract_inverted_index.well | 175 |
| abstract_inverted_index.work | 101, 205 |
| abstract_inverted_index.(LRF) | 71 |
| abstract_inverted_index.(SVD) | 78 |
| abstract_inverted_index.drops | 48 |
| abstract_inverted_index.first | 204 |
| abstract_inverted_index.group | 158 |
| abstract_inverted_index.major | 186 |
| abstract_inverted_index.model | 11, 50, 82, 92, 130, 162 |
| abstract_inverted_index.named | 146 |
| abstract_inverted_index.serve | 107 |
| abstract_inverted_index.shows | 102 |
| abstract_inverted_index.study | 183 |
| abstract_inverted_index.their | 54 |
| abstract_inverted_index.value | 76 |
| abstract_inverted_index.which | 52, 87 |
| abstract_inverted_index.while | 13 |
| abstract_inverted_index.Unlike | 84 |
| abstract_inverted_index.across | 132 |
| abstract_inverted_index.become | 5, 18 |
| abstract_inverted_index.fields | 24 |
| abstract_inverted_index.groups | 133 |
| abstract_inverted_index.issue, | 63 |
| abstract_inverted_index.limits | 53 |
| abstract_inverted_index.mainly | 89 |
| abstract_inverted_index.method | 169 |
| abstract_inverted_index.reduce | 157 |
| abstract_inverted_index.suffer | 46 |
| abstract_inverted_index.weight | 98 |
| abstract_inverted_index.address | 61 |
| abstract_inverted_index.defined | 134 |
| abstract_inverted_index.improve | 80 |
| abstract_inverted_index.medical | 27 |
| abstract_inverted_index.method, | 145 |
| abstract_inverted_index.methods | 34, 173 |
| abstract_inverted_index.models. | 194 |
| abstract_inverted_index.propose | 65, 143 |
| abstract_inverted_index.removes | 150 |
| abstract_inverted_index.unitary | 122, 154 |
| abstract_inverted_index.variety | 31 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Although | 29 |
| abstract_inverted_index.FairLRF, | 147 |
| abstract_inverted_index.ablation | 182 |
| abstract_inverted_index.elements | 119, 152 |
| abstract_inverted_index.ensuring | 10 |
| abstract_inverted_index.examines | 184 |
| abstract_inverted_index.fairness | 12, 113, 214 |
| abstract_inverted_index.integral | 6 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.matrices | 123, 155 |
| abstract_inverted_index.observed | 117 |
| abstract_inverted_index.obtained | 124 |
| abstract_inverted_index.reducing | 97 |
| abstract_inverted_index.singular | 75 |
| abstract_inverted_index.Extensive | 164 |
| abstract_inverted_index.Motivated | 138 |
| abstract_inverted_index.accuracy, | 51 |
| abstract_inverted_index.critical, | 20 |
| abstract_inverted_index.debiasing | 43 |
| abstract_inverted_index.effective | 110 |
| abstract_inverted_index.enhancing | 161 |
| abstract_inverted_index.expensive | 42 |
| abstract_inverted_index.fairness. | 83, 163 |
| abstract_inverted_index.framework | 72 |
| abstract_inverted_index.influence | 189 |
| abstract_inverted_index.leverages | 74 |
| abstract_inverted_index.matrices, | 99 |
| abstract_inverted_index.primarily | 209 |
| abstract_inverted_index.processed | 193 |
| abstract_inverted_index.proposed, | 37 |
| abstract_inverted_index.sensitive | 23, 136 |
| abstract_inverted_index.settings. | 59 |
| abstract_inverted_index.unequally | 128 |
| abstract_inverted_index.utilizing | 206 |
| abstract_inverted_index.contribute | 127 |
| abstract_inverted_index.diagnosis. | 28 |
| abstract_inverted_index.knowledge, | 200 |
| abstract_inverted_index.strategies | 44 |
| abstract_inverted_index.techniques | 4 |
| abstract_inverted_index.attributes. | 137 |
| abstract_inverted_index.compression | 93, 211 |
| abstract_inverted_index.decomposing | 95 |
| abstract_inverted_index.experiments | 165 |
| abstract_inverted_index.maintaining | 14 |
| abstract_inverted_index.outperforms | 170 |
| abstract_inverted_index.performance | 16, 191 |
| abstract_inverted_index.real-world, | 57 |
| abstract_inverted_index.selectively | 149 |
| abstract_inverted_index.substantial | 47 |
| abstract_inverted_index.techniques. | 179 |
| abstract_inverted_index.traditional | 85 |
| abstract_inverted_index.conventional | 171 |
| abstract_inverted_index.disparities, | 159 |
| abstract_inverted_index.enhancement. | 114, 215 |
| abstract_inverted_index.increasingly | 19 |
| abstract_inverted_index.observation, | 141 |
| abstract_inverted_index.particularly | 21 |
| abstract_inverted_index.practicality | 55 |
| abstract_inverted_index.Additionally, | 180 |
| abstract_inverted_index.Specifically, | 115 |
| abstract_inverted_index.applications, | 9 |
| abstract_inverted_index.bias-inducing | 151 |
| abstract_inverted_index.decomposition | 77 |
| abstract_inverted_index.factorization | 70 |
| abstract_inverted_index.bias-mitigation | 33 |
| abstract_inverted_index.computationally | 41 |
| abstract_inverted_index.hyper-parameters | 187 |
| abstract_inverted_index.state-of-the-art | 177 |
| abstract_inverted_index.fairness-oriented | 67 |
| abstract_inverted_index.fairness-enhancing | 178 |
| abstract_inverted_index.resource-constrained | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |