Fast, accurate, and precise detector simulation with vision transformers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.25169
The speed and fidelity of detector simulations in particle physics pose compelling questions about LHC analysis and future colliders. The sparse high-dimensional data, combined with the required precision, provide a challenging task for modern generative networks. We present a comparison between solutions with different trade-offs, including accurate Conditional Flow Matching and faster coupling-based Normalising Flows. Vision Transformers allows us to emulate the energy deposition from detailed Geant4 simulations. We evaluate the networks using high-level observables, neural network classifiers, and sampling timings, showing minimum deviations from Geant4 while achieving faster generation. We use the CaloChallenge benchmark datasets for reproducibility and further development.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.25169
- https://arxiv.org/pdf/2509.25169
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415337903
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415337903Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.25169Digital Object Identifier
- Title
-
Fast, accurate, and precise detector simulation with vision transformersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Luigi Favaro, A. Giammanco, Claudius KrauseList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.25169Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.25169Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.25169Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415337903 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.25169 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.25169 |
| ids.openalex | https://openalex.org/W4415337903 |
| fwci | |
| type | preprint |
| title | Fast, accurate, and precise detector simulation with vision transformers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11992 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9869999885559082 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | CCD and CMOS Imaging Sensors |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9671000242233276 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.25169 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.25169 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.25169 |
| locations[1].id | doi:10.48550/arxiv.2509.25169 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.25169 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029426300 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2421-7100 |
| authorships[0].author.display_name | Luigi Favaro |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Favaro, Luigi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073140876 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9640-8294 |
| authorships[1].author.display_name | A. Giammanco |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giammanco, Andrea |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005322378 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0924-3036 |
| authorships[2].author.display_name | Claudius Krause |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Krause, Claudius |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.25169 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | Fast, accurate, and precise detector simulation with vision transformers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11992 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9869999885559082 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | CCD and CMOS Imaging Sensors |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.25169 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.25169 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.25169 |
| primary_location.id | pmh:oai:arXiv.org:2509.25169 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.25169 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.25169 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 38 |
| abstract_inverted_index.We | 36, 68, 90 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.of | 4 |
| abstract_inverted_index.to | 59 |
| abstract_inverted_index.us | 58 |
| abstract_inverted_index.LHC | 14 |
| abstract_inverted_index.The | 0, 19 |
| abstract_inverted_index.and | 2, 16, 50, 78, 98 |
| abstract_inverted_index.for | 32, 96 |
| abstract_inverted_index.the | 25, 61, 70, 92 |
| abstract_inverted_index.use | 91 |
| abstract_inverted_index.Flow | 48 |
| abstract_inverted_index.from | 64, 84 |
| abstract_inverted_index.pose | 10 |
| abstract_inverted_index.task | 31 |
| abstract_inverted_index.with | 24, 42 |
| abstract_inverted_index.about | 13 |
| abstract_inverted_index.data, | 22 |
| abstract_inverted_index.speed | 1 |
| abstract_inverted_index.using | 72 |
| abstract_inverted_index.while | 86 |
| abstract_inverted_index.Flows. | 54 |
| abstract_inverted_index.Geant4 | 66, 85 |
| abstract_inverted_index.Vision | 55 |
| abstract_inverted_index.allows | 57 |
| abstract_inverted_index.energy | 62 |
| abstract_inverted_index.faster | 51, 88 |
| abstract_inverted_index.future | 17 |
| abstract_inverted_index.modern | 33 |
| abstract_inverted_index.neural | 75 |
| abstract_inverted_index.sparse | 20 |
| abstract_inverted_index.between | 40 |
| abstract_inverted_index.emulate | 60 |
| abstract_inverted_index.further | 99 |
| abstract_inverted_index.minimum | 82 |
| abstract_inverted_index.network | 76 |
| abstract_inverted_index.physics | 9 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.provide | 28 |
| abstract_inverted_index.showing | 81 |
| abstract_inverted_index.Matching | 49 |
| abstract_inverted_index.accurate | 46 |
| abstract_inverted_index.analysis | 15 |
| abstract_inverted_index.combined | 23 |
| abstract_inverted_index.datasets | 95 |
| abstract_inverted_index.detailed | 65 |
| abstract_inverted_index.detector | 5 |
| abstract_inverted_index.evaluate | 69 |
| abstract_inverted_index.fidelity | 3 |
| abstract_inverted_index.networks | 71 |
| abstract_inverted_index.particle | 8 |
| abstract_inverted_index.required | 26 |
| abstract_inverted_index.sampling | 79 |
| abstract_inverted_index.timings, | 80 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.benchmark | 94 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.including | 45 |
| abstract_inverted_index.networks. | 35 |
| abstract_inverted_index.questions | 12 |
| abstract_inverted_index.solutions | 41 |
| abstract_inverted_index.colliders. | 18 |
| abstract_inverted_index.comparison | 39 |
| abstract_inverted_index.compelling | 11 |
| abstract_inverted_index.deposition | 63 |
| abstract_inverted_index.deviations | 83 |
| abstract_inverted_index.generative | 34 |
| abstract_inverted_index.high-level | 73 |
| abstract_inverted_index.precision, | 27 |
| abstract_inverted_index.Conditional | 47 |
| abstract_inverted_index.Normalising | 53 |
| abstract_inverted_index.challenging | 30 |
| abstract_inverted_index.generation. | 89 |
| abstract_inverted_index.simulations | 6 |
| abstract_inverted_index.trade-offs, | 44 |
| abstract_inverted_index.Transformers | 56 |
| abstract_inverted_index.classifiers, | 77 |
| abstract_inverted_index.development. | 100 |
| abstract_inverted_index.observables, | 74 |
| abstract_inverted_index.simulations. | 67 |
| abstract_inverted_index.CaloChallenge | 93 |
| abstract_inverted_index.coupling-based | 52 |
| abstract_inverted_index.reproducibility | 97 |
| abstract_inverted_index.high-dimensional | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |