Fast Algorithms for Large-Scale Generalized Distance Weighted Discrimination Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17615/w54a-gp80
High-dimension-low-sample size statistical analysis is important in a wide range of applications. In such situations, the highly appealing discrimination method, support vector machine, can be improved to alleviate data piling at the margin. This leads naturally to the development of distance weighted discrimination (DWD), which can be modeled as a second-order cone programming problem and solved by interior-point methods when the scale (in sample size and feature dimension) of the data is moderate. Here, we design a scalable and robust algorithm for solving large-scale generalized DWD problems. Numerical experiments on real datasets from the UCI repository demonstrate that our algorithm is highly efficient in solving large-scale problems, and sometimes even more efficient than the highly optimized LIBLINEAR and LIBSVM for solving the corresponding SVM problems. Supplementary material for this article is available online.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17615/w54a-gp80
- OA Status
- green
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2337777550
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2337777550Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/w54a-gp80Digital Object Identifier
- Title
-
Fast Algorithms for Large-Scale Generalized Distance Weighted DiscriminationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-14Full publication date if available
- Authors
-
Xin Yee Lam, J. S. Marron, Defeng Sun, Kim-Chuan TohList of authors in order
- Landing page
-
https://doi.org/10.17615/w54a-gp80Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17615/w54a-gp80Direct OA link when available
- Concepts
-
Dimension (graph theory), Margin (machine learning), Support vector machine, Scale (ratio), Range (aeronautics), Algorithm, Computer science, Scalability, Sample size determination, Sample (material), Point (geometry), Pattern recognition (psychology), Mathematics, Artificial intelligence, Machine learning, Statistics, Database, Quantum mechanics, Chemistry, Physics, Geometry, Pure mathematics, Materials science, Composite material, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2017: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2337777550 |
|---|---|
| doi | https://doi.org/10.17615/w54a-gp80 |
| ids.doi | https://doi.org/10.17615/w54a-gp80 |
| ids.mag | 2337777550 |
| ids.openalex | https://openalex.org/W2337777550 |
| fwci | 0.0 |
| type | article |
| title | Fast Algorithms for Large-Scale Generalized Distance Weighted Discrimination |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T11871 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Advanced Statistical Methods and Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33676613 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6918430924415588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[0].display_name | Dimension (graph theory) |
| concepts[1].id | https://openalex.org/C774472 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6387320756912231 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[1].display_name | Margin (machine learning) |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6274470686912537 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6237092614173889 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C204323151 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5880659818649292 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[4].display_name | Range (aeronautics) |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.582472026348114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5789415836334229 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C48044578 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49986743927001953 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[7].display_name | Scalability |
| concepts[8].id | https://openalex.org/C129848803 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46494996547698975 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[8].display_name | Sample size determination |
| concepts[9].id | https://openalex.org/C198531522 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4626511037349701 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[9].display_name | Sample (material) |
| concepts[10].id | https://openalex.org/C28719098 |
| concepts[10].level | 2 |
| concepts[10].score | 0.450364351272583 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[10].display_name | Point (geometry) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35607635974884033 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.35373884439468384 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.27109280228614807 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21602383255958557 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10729816555976868 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C77088390 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[16].display_name | Database |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| concepts[21].id | https://openalex.org/C202444582 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[21].display_name | Pure mathematics |
| concepts[22].id | https://openalex.org/C192562407 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[22].display_name | Materials science |
| concepts[23].id | https://openalex.org/C159985019 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[23].display_name | Composite material |
| concepts[24].id | https://openalex.org/C43617362 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[24].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/dimension |
| keywords[0].score | 0.6918430924415588 |
| keywords[0].display_name | Dimension (graph theory) |
| keywords[1].id | https://openalex.org/keywords/margin |
| keywords[1].score | 0.6387320756912231 |
| keywords[1].display_name | Margin (machine learning) |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.6274470686912537 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.6237092614173889 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/range |
| keywords[4].score | 0.5880659818649292 |
| keywords[4].display_name | Range (aeronautics) |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.582472026348114 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5789415836334229 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/scalability |
| keywords[7].score | 0.49986743927001953 |
| keywords[7].display_name | Scalability |
| keywords[8].id | https://openalex.org/keywords/sample-size-determination |
| keywords[8].score | 0.46494996547698975 |
| keywords[8].display_name | Sample size determination |
| keywords[9].id | https://openalex.org/keywords/sample |
| keywords[9].score | 0.4626511037349701 |
| keywords[9].display_name | Sample (material) |
| keywords[10].id | https://openalex.org/keywords/point |
| keywords[10].score | 0.450364351272583 |
| keywords[10].display_name | Point (geometry) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.35607635974884033 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.35373884439468384 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.27109280228614807 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.21602383255958557 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.10729816555976868 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.17615/w54a-gp80 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407051488 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UNC Libraries |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.17615/w54a-gp80 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5004215320 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xin Yee Lam |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[0].affiliations[0].raw_affiliation_string | National University of Singapore, |
| authorships[0].institutions[0].id | https://openalex.org/I165932596 |
| authorships[0].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | National University of Singapore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xin Yee Lam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National University of Singapore, |
| authorships[1].author.id | https://openalex.org/A5060651495 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. S. Marron |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[1].affiliations[0].raw_affiliation_string | §Department of Statistics & Operations Research, University of North Carolina, Chapel Hill, NC |
| authorships[1].institutions[0].id | https://openalex.org/I114027177 |
| authorships[1].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | J. S. Marron |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | §Department of Statistics & Operations Research, University of North Carolina, Chapel Hill, NC |
| authorships[2].author.id | https://openalex.org/A5029911976 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0481-272X |
| authorships[2].author.display_name | Defeng Sun |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[2].affiliations[0].raw_affiliation_string | The Hong Kong Polytechnic University , Hong Kong |
| authorships[2].institutions[0].id | https://openalex.org/I14243506 |
| authorships[2].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Defeng Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Hong Kong Polytechnic University , Hong Kong |
| authorships[3].author.id | https://openalex.org/A5064083862 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7204-8933 |
| authorships[3].author.display_name | Kim-Chuan Toh |
| authorships[3].countries | SG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[3].affiliations[0].raw_affiliation_string | National University of Singapore, |
| authorships[3].institutions[0].id | https://openalex.org/I165932596 |
| authorships[3].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[3].institutions[0].country_code | SG |
| authorships[3].institutions[0].display_name | National University of Singapore |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kim-Chuan Toh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National University of Singapore, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17615/w54a-gp80 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Algorithms for Large-Scale Generalized Distance Weighted Discrimination |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W3125011624, https://openalex.org/W1508631387, https://openalex.org/W2370917603, https://openalex.org/W2952760143, https://openalex.org/W2017776670, https://openalex.org/W2347897961, https://openalex.org/W2389214306, https://openalex.org/W2340870721, https://openalex.org/W2358318464, https://openalex.org/W2379140333 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2017 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17615/w54a-gp80 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407051488 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UNC Libraries |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17615/w54a-gp80 |
| primary_location.id | doi:10.17615/w54a-gp80 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407051488 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UNC Libraries |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.17615/w54a-gp80 |
| publication_date | 2024-08-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1998894275, https://openalex.org/W3120740533, https://openalex.org/W1875158154, https://openalex.org/W2260723660, https://openalex.org/W1572596285, https://openalex.org/W2139345901, https://openalex.org/W2156909104, https://openalex.org/W1999913571, https://openalex.org/W2056145308, https://openalex.org/W3102223204, https://openalex.org/W1506342804, https://openalex.org/W2007527993, https://openalex.org/W2280348062, https://openalex.org/W1599435328, https://openalex.org/W2072536590, https://openalex.org/W1964730816, https://openalex.org/W2153635508, https://openalex.org/W2058532290, https://openalex.org/W2045079045, https://openalex.org/W1992841740, https://openalex.org/W2093499918, https://openalex.org/W1987573622 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 7, 49, 76 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.at | 30 |
| abstract_inverted_index.be | 24, 46 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 6, 103 |
| abstract_inverted_index.is | 4, 71, 100, 130 |
| abstract_inverted_index.of | 10, 39, 68 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 26, 36 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.(in | 62 |
| abstract_inverted_index.DWD | 85 |
| abstract_inverted_index.SVM | 123 |
| abstract_inverted_index.UCI | 94 |
| abstract_inverted_index.and | 54, 65, 78, 107, 117 |
| abstract_inverted_index.can | 23, 45 |
| abstract_inverted_index.for | 81, 119, 127 |
| abstract_inverted_index.our | 98 |
| abstract_inverted_index.the | 15, 31, 37, 60, 69, 93, 113, 121 |
| abstract_inverted_index.This | 33 |
| abstract_inverted_index.cone | 51 |
| abstract_inverted_index.data | 28, 70 |
| abstract_inverted_index.even | 109 |
| abstract_inverted_index.from | 92 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.real | 90 |
| abstract_inverted_index.size | 1, 64 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.than | 112 |
| abstract_inverted_index.that | 97 |
| abstract_inverted_index.this | 128 |
| abstract_inverted_index.when | 59 |
| abstract_inverted_index.wide | 8 |
| abstract_inverted_index.Here, | 73 |
| abstract_inverted_index.leads | 34 |
| abstract_inverted_index.range | 9 |
| abstract_inverted_index.scale | 61 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.(DWD), | 43 |
| abstract_inverted_index.LIBSVM | 118 |
| abstract_inverted_index.design | 75 |
| abstract_inverted_index.highly | 16, 101, 114 |
| abstract_inverted_index.piling | 29 |
| abstract_inverted_index.robust | 79 |
| abstract_inverted_index.sample | 63 |
| abstract_inverted_index.solved | 55 |
| abstract_inverted_index.vector | 21 |
| abstract_inverted_index.article | 129 |
| abstract_inverted_index.feature | 66 |
| abstract_inverted_index.margin. | 32 |
| abstract_inverted_index.method, | 19 |
| abstract_inverted_index.methods | 58 |
| abstract_inverted_index.modeled | 47 |
| abstract_inverted_index.online. | 132 |
| abstract_inverted_index.problem | 53 |
| abstract_inverted_index.solving | 82, 104, 120 |
| abstract_inverted_index.support | 20 |
| abstract_inverted_index.analysis | 3 |
| abstract_inverted_index.datasets | 91 |
| abstract_inverted_index.distance | 40 |
| abstract_inverted_index.improved | 25 |
| abstract_inverted_index.machine, | 22 |
| abstract_inverted_index.material | 126 |
| abstract_inverted_index.scalable | 77 |
| abstract_inverted_index.weighted | 41 |
| abstract_inverted_index.LIBLINEAR | 116 |
| abstract_inverted_index.Numerical | 87 |
| abstract_inverted_index.algorithm | 80, 99 |
| abstract_inverted_index.alleviate | 27 |
| abstract_inverted_index.appealing | 17 |
| abstract_inverted_index.available | 131 |
| abstract_inverted_index.efficient | 102, 111 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.moderate. | 72 |
| abstract_inverted_index.naturally | 35 |
| abstract_inverted_index.optimized | 115 |
| abstract_inverted_index.problems, | 106 |
| abstract_inverted_index.problems. | 86, 124 |
| abstract_inverted_index.sometimes | 108 |
| abstract_inverted_index.dimension) | 67 |
| abstract_inverted_index.repository | 95 |
| abstract_inverted_index.demonstrate | 96 |
| abstract_inverted_index.development | 38 |
| abstract_inverted_index.experiments | 88 |
| abstract_inverted_index.generalized | 84 |
| abstract_inverted_index.large-scale | 83, 105 |
| abstract_inverted_index.programming | 52 |
| abstract_inverted_index.situations, | 14 |
| abstract_inverted_index.statistical | 2 |
| abstract_inverted_index.second-order | 50 |
| abstract_inverted_index.Supplementary | 125 |
| abstract_inverted_index.applications. | 11 |
| abstract_inverted_index.corresponding | 122 |
| abstract_inverted_index.discrimination | 18, 42 |
| abstract_inverted_index.interior-point | 57 |
| abstract_inverted_index.High-dimension-low-sample | 0 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.00081423 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |