Fast Approximation Algorithms for Piercing Boxes by Points Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.02050
$\newcommand{\popt}{\mathcal{p}} \newcommand{\Re}{\mathbb{R}}\newcommand{\N}{\mathcal{N}} \newcommand{\BX}{\mathcal{B}} \newcommand{\bb}{\mathsf{b}} \newcommand{\eps}{\varepsilon} \newcommand{\polylog}{\mathrm{polylog}} $ Let $\mathcal{B}=\{\mathsf{b}_1, \ldots ,\mathsf{b}_n\}$ be a set of $n$ axis-aligned boxes in $\Re^d$ where $d\geq2$ is a constant. The \emph{piercing problem} is to compute a smallest set of points $\N \subset \Re^d$ that hits every box in $\mathcal{B}$, i.e., $\N\cap \mathsf{b}_i\neq \emptyset$, for $i=1,\ldots, n$. Let $\popt=\popt(\mathcal{B})$, the \emph{piercing number} be the minimum size of a piercing set of $\mathcal{B}$. We present a randomized $O(d^2\log\log \popt)$-approximation algorithm with expected running time $O(n^{d/2}\polylog n)$. Next, we present a faster $O(n^{\log d+1})$-time algorithm but with a slightly inferior approximation factor of $O(2^{4d}\log\log\popt)$. The running time of both algorithms can be improved to near-linear using a sampling-based technique, if $\popt = O(n^{1/d})$. For the dynamic version of the problem in the plane, we obtain a randomized $O(\log\log\popt)$-approximation algorithm with $O(n^{1/2}\polylog n )$ amortized expected update time for insertion or deletion of boxes. For squares in $\Re^2$, the update time can be improved to $O(n^{1/3}\polylog n )$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.02050
- https://arxiv.org/pdf/2311.02050
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388444886
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388444886Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.02050Digital Object Identifier
- Title
-
Fast Approximation Algorithms for Piercing Boxes by PointsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-03Full publication date if available
- Authors
-
Pankaj K. Agarwal, Sariel Har-Peled, Rahul Raychaudhury, Stavros SintosList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.02050Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.02050Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.02050Direct OA link when available
- Concepts
-
Combinatorics, Multiplicative function, Mathematics, Omega, Running time, Binary logarithm, Approximation algorithm, Algorithm, Physics, Mathematical analysis, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388444886 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.02050 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.02050 |
| ids.openalex | https://openalex.org/W4388444886 |
| fwci | |
| type | preprint |
| title | Fast Approximation Algorithms for Piercing Boxes by Points |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10720 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9782999753952026 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Complexity and Algorithms in Graphs |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114614502 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7803877592086792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[0].display_name | Combinatorics |
| concepts[1].id | https://openalex.org/C42747912 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6434087157249451 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1048447 |
| concepts[1].display_name | Multiplicative function |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5848770141601562 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C2779557605 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5770173072814941 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9890 |
| concepts[3].display_name | Omega |
| concepts[4].id | https://openalex.org/C3017489831 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5065699815750122 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[4].display_name | Running time |
| concepts[5].id | https://openalex.org/C63553672 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5012729167938232 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q581168 |
| concepts[5].display_name | Binary logarithm |
| concepts[6].id | https://openalex.org/C148764684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4612649083137512 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[6].display_name | Approximation algorithm |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28740638494491577 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18544059991836548 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09816014766693115 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/combinatorics |
| keywords[0].score | 0.7803877592086792 |
| keywords[0].display_name | Combinatorics |
| keywords[1].id | https://openalex.org/keywords/multiplicative-function |
| keywords[1].score | 0.6434087157249451 |
| keywords[1].display_name | Multiplicative function |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5848770141601562 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/omega |
| keywords[3].score | 0.5770173072814941 |
| keywords[3].display_name | Omega |
| keywords[4].id | https://openalex.org/keywords/running-time |
| keywords[4].score | 0.5065699815750122 |
| keywords[4].display_name | Running time |
| keywords[5].id | https://openalex.org/keywords/binary-logarithm |
| keywords[5].score | 0.5012729167938232 |
| keywords[5].display_name | Binary logarithm |
| keywords[6].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[6].score | 0.4612649083137512 |
| keywords[6].display_name | Approximation algorithm |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.28740638494491577 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.18544059991836548 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[9].score | 0.09816014766693115 |
| keywords[9].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.02050 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.02050 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.02050 |
| locations[1].id | doi:10.48550/arxiv.2311.02050 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.02050 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058649592 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9439-181X |
| authorships[0].author.display_name | Pankaj K. Agarwal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Agarwal, Pankaj K. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040577923 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2638-9635 |
| authorships[1].author.display_name | Sariel Har-Peled |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Har-Peled, Sariel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043765015 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rahul Raychaudhury |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Raychaudhury, Rahul |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015883931 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2114-8886 |
| authorships[3].author.display_name | Stavros Sintos |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sintos, Stavros |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.02050 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Approximation Algorithms for Piercing Boxes by Points |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10720 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9782999753952026 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Complexity and Algorithms in Graphs |
| related_works | https://openalex.org/W2184770394, https://openalex.org/W3127082728, https://openalex.org/W2067936666, https://openalex.org/W2113270940, https://openalex.org/W2004283824, https://openalex.org/W2963158951, https://openalex.org/W2070751425, https://openalex.org/W1581210843, https://openalex.org/W1982530285, https://openalex.org/W2085573573 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.02050 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.02050 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.02050 |
| primary_location.id | pmh:oai:arXiv.org:2311.02050 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.02050 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.02050 |
| publication_date | 2023-11-03 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.$ | 6 |
| abstract_inverted_index.= | 114 |
| abstract_inverted_index.a | 12, 23, 31, 62, 69, 83, 90, 109, 128 |
| abstract_inverted_index.n | 134, 158 |
| abstract_inverted_index.)$ | 135 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.be | 11, 57, 104, 154 |
| abstract_inverted_index.if | 112 |
| abstract_inverted_index.in | 18, 43, 123, 148 |
| abstract_inverted_index.is | 22, 28 |
| abstract_inverted_index.of | 14, 34, 61, 65, 95, 100, 120, 144 |
| abstract_inverted_index.or | 142 |
| abstract_inverted_index.to | 29, 106, 156 |
| abstract_inverted_index.we | 81, 126 |
| abstract_inverted_index.$\N | 36 |
| abstract_inverted_index.$n$ | 15 |
| abstract_inverted_index.)$. | 159 |
| abstract_inverted_index.For | 116, 146 |
| abstract_inverted_index.Let | 7, 52 |
| abstract_inverted_index.The | 25, 97 |
| abstract_inverted_index.box | 42 |
| abstract_inverted_index.but | 88 |
| abstract_inverted_index.can | 103, 153 |
| abstract_inverted_index.for | 49, 140 |
| abstract_inverted_index.n$. | 51 |
| abstract_inverted_index.set | 13, 33, 64 |
| abstract_inverted_index.the | 54, 58, 117, 121, 124, 150 |
| abstract_inverted_index.both | 101 |
| abstract_inverted_index.hits | 40 |
| abstract_inverted_index.n)$. | 79 |
| abstract_inverted_index.size | 60 |
| abstract_inverted_index.that | 39 |
| abstract_inverted_index.time | 77, 99, 139, 152 |
| abstract_inverted_index.with | 74, 89, 132 |
| abstract_inverted_index.Next, | 80 |
| abstract_inverted_index.boxes | 17 |
| abstract_inverted_index.every | 41 |
| abstract_inverted_index.i.e., | 45 |
| abstract_inverted_index.using | 108 |
| abstract_inverted_index.where | 20 |
| abstract_inverted_index.$\popt | 113 |
| abstract_inverted_index.\Re^d$ | 38 |
| abstract_inverted_index.\ldots | 9 |
| abstract_inverted_index.boxes. | 145 |
| abstract_inverted_index.factor | 94 |
| abstract_inverted_index.faster | 84 |
| abstract_inverted_index.obtain | 127 |
| abstract_inverted_index.plane, | 125 |
| abstract_inverted_index.points | 35 |
| abstract_inverted_index.update | 138, 151 |
| abstract_inverted_index.$\N\cap | 46 |
| abstract_inverted_index.$\Re^d$ | 19 |
| abstract_inverted_index.\subset | 37 |
| abstract_inverted_index.compute | 30 |
| abstract_inverted_index.dynamic | 118 |
| abstract_inverted_index.minimum | 59 |
| abstract_inverted_index.number} | 56 |
| abstract_inverted_index.present | 68, 82 |
| abstract_inverted_index.problem | 122 |
| abstract_inverted_index.running | 76, 98 |
| abstract_inverted_index.squares | 147 |
| abstract_inverted_index.version | 119 |
| abstract_inverted_index.$\Re^2$, | 149 |
| abstract_inverted_index.$d\geq2$ | 21 |
| abstract_inverted_index.deletion | 143 |
| abstract_inverted_index.expected | 75, 137 |
| abstract_inverted_index.improved | 105, 155 |
| abstract_inverted_index.inferior | 92 |
| abstract_inverted_index.piercing | 63 |
| abstract_inverted_index.problem} | 27 |
| abstract_inverted_index.slightly | 91 |
| abstract_inverted_index.smallest | 32 |
| abstract_inverted_index.algorithm | 73, 87, 131 |
| abstract_inverted_index.amortized | 136 |
| abstract_inverted_index.constant. | 24 |
| abstract_inverted_index.insertion | 141 |
| abstract_inverted_index.$O(n^{\log | 85 |
| abstract_inverted_index.algorithms | 102 |
| abstract_inverted_index.randomized | 70, 129 |
| abstract_inverted_index.technique, | 111 |
| abstract_inverted_index.\emptyset$, | 48 |
| abstract_inverted_index.d+1})$-time | 86 |
| abstract_inverted_index.near-linear | 107 |
| abstract_inverted_index.$i=1,\ldots, | 50 |
| abstract_inverted_index.O(n^{1/d})$. | 115 |
| abstract_inverted_index.axis-aligned | 16 |
| abstract_inverted_index.approximation | 93 |
| abstract_inverted_index.$O(d^2\log\log | 71 |
| abstract_inverted_index.$\mathcal{B}$, | 44 |
| abstract_inverted_index.$\mathcal{B}$. | 66 |
| abstract_inverted_index.\emph{piercing | 26, 55 |
| abstract_inverted_index.sampling-based | 110 |
| abstract_inverted_index.,\mathsf{b}_n\}$ | 10 |
| abstract_inverted_index.\mathsf{b}_i\neq | 47 |
| abstract_inverted_index.$O(n^{1/2}\polylog | 133 |
| abstract_inverted_index.$O(n^{1/3}\polylog | 157 |
| abstract_inverted_index.$O(n^{d/2}\polylog | 78 |
| abstract_inverted_index.\popt)$-approximation | 72 |
| abstract_inverted_index.$O(2^{4d}\log\log\popt)$. | 96 |
| abstract_inverted_index.$\popt=\popt(\mathcal{B})$, | 53 |
| abstract_inverted_index.$\mathcal{B}=\{\mathsf{b}_1, | 8 |
| abstract_inverted_index.\newcommand{\bb}{\mathsf{b}} | 3 |
| abstract_inverted_index.\newcommand{\BX}{\mathcal{B}} | 2 |
| abstract_inverted_index.\newcommand{\eps}{\varepsilon} | 4 |
| abstract_inverted_index.$O(\log\log\popt)$-approximation | 130 |
| abstract_inverted_index.$\newcommand{\popt}{\mathcal{p}} | 0 |
| abstract_inverted_index.\newcommand{\polylog}{\mathrm{polylog}} | 5 |
| abstract_inverted_index.\newcommand{\Re}{\mathbb{R}}\newcommand{\N}{\mathcal{N}} | 1 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |