Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.08923
Shapley value is originally a concept in econometrics to fairly distribute both gains and costs to players in a coalition game. In the recent decades, its application has been extended to other areas such as marketing, engineering and machine learning. For example, it produces reasonable solutions for problems in sensitivity analysis, local model explanation towards the interpretable machine learning, node importance in social network, attribution models, etc. However, its heavy computational burden has been long recognized but rarely investigated. Specifically, in a $d$-player coalition game, calculating a Shapley value requires the evaluation of $d!$ or $2^d$ marginal contribution values, depending on whether we are taking the permutation or combination formulation of the Shapley value. Hence it becomes infeasible to calculate the Shapley value when $d$ is reasonably large. A common remedy is to take a random sample of the permutations to surrogate for the complete list of permutations. We find an advanced sampling scheme can be designed to yield much more accurate estimation of the Shapley value than the simple random sampling (SRS). Our sampling scheme is based on combinatorial structures in the field of design of experiments (DOE), particularly the order-of-addition experimental designs for the study of how the orderings of components would affect the output. We show that the obtained estimates are unbiased, and can sometimes deterministically recover the original Shapley value. Both theoretical and simulations results show that our DOE-based sampling scheme outperforms SRS in terms of estimation accuracy. Surprisingly, it is also slightly faster than SRS. Lastly, real data analysis is conducted for the C. elegans nervous system and the 9/11 terrorist network.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.08923
- https://arxiv.org/pdf/2309.08923
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386875105
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386875105Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.08923Digital Object Identifier
- Title
-
Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental DesignsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-16Full publication date if available
- Authors
-
Liuqing Yang, Yongdao Zhou, Haoda Fu, Min‐Qian Liu, Wei ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.08923Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.08923Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.08923Direct OA link when available
- Concepts
-
Shapley value, Permutation (music), Sampling (signal processing), Cooperative game theory, Mathematical optimization, Computer science, Value (mathematics), Order (exchange), Contrast (vision), Sample (material), Scheme (mathematics), Mathematics, Game theory, Mathematical economics, Artificial intelligence, Machine learning, Economics, Computer vision, Mathematical analysis, Chromatography, Acoustics, Filter (signal processing), Finance, Chemistry, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386875105 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.08923 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.08923 |
| ids.openalex | https://openalex.org/W4386875105 |
| fwci | |
| type | preprint |
| title | Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11798 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.8808000087738037 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Optimal Experimental Design Methods |
| topics[1].id | https://openalex.org/T11031 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.8741000294685364 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Game Theory and Applications |
| topics[2].id | https://openalex.org/T12659 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.871399998664856 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Innovation Diffusion and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199022921 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8743516802787781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q240046 |
| concepts[0].display_name | Shapley value |
| concepts[1].id | https://openalex.org/C21308566 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6214637160301208 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7169365 |
| concepts[1].display_name | Permutation (music) |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6088243722915649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C2781416736 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5633071064949036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q105354050 |
| concepts[3].display_name | Cooperative game theory |
| concepts[4].id | https://openalex.org/C126255220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5368554592132568 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[4].display_name | Mathematical optimization |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5197931528091431 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2776291640 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48301514983177185 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[6].display_name | Value (mathematics) |
| concepts[7].id | https://openalex.org/C182306322 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4813738167285919 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[7].display_name | Order (exchange) |
| concepts[8].id | https://openalex.org/C2776502983 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46617841720581055 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[8].display_name | Contrast (vision) |
| concepts[9].id | https://openalex.org/C198531522 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44793757796287537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[9].display_name | Sample (material) |
| concepts[10].id | https://openalex.org/C77618280 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43788382411003113 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[10].display_name | Scheme (mathematics) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.31913942098617554 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C177142836 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2923738956451416 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q44455 |
| concepts[12].display_name | Game theory |
| concepts[13].id | https://openalex.org/C144237770 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26577067375183105 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[13].display_name | Mathematical economics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15220507979393005 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10943824052810669 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.09567561745643616 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C43617362 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[19].display_name | Chromatography |
| concepts[20].id | https://openalex.org/C24890656 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[20].display_name | Acoustics |
| concepts[21].id | https://openalex.org/C106131492 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[21].display_name | Filter (signal processing) |
| concepts[22].id | https://openalex.org/C10138342 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[22].display_name | Finance |
| concepts[23].id | https://openalex.org/C185592680 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[23].display_name | Chemistry |
| concepts[24].id | https://openalex.org/C121332964 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[24].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/shapley-value |
| keywords[0].score | 0.8743516802787781 |
| keywords[0].display_name | Shapley value |
| keywords[1].id | https://openalex.org/keywords/permutation |
| keywords[1].score | 0.6214637160301208 |
| keywords[1].display_name | Permutation (music) |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.6088243722915649 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/cooperative-game-theory |
| keywords[3].score | 0.5633071064949036 |
| keywords[3].display_name | Cooperative game theory |
| keywords[4].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[4].score | 0.5368554592132568 |
| keywords[4].display_name | Mathematical optimization |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5197931528091431 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/value |
| keywords[6].score | 0.48301514983177185 |
| keywords[6].display_name | Value (mathematics) |
| keywords[7].id | https://openalex.org/keywords/order |
| keywords[7].score | 0.4813738167285919 |
| keywords[7].display_name | Order (exchange) |
| keywords[8].id | https://openalex.org/keywords/contrast |
| keywords[8].score | 0.46617841720581055 |
| keywords[8].display_name | Contrast (vision) |
| keywords[9].id | https://openalex.org/keywords/sample |
| keywords[9].score | 0.44793757796287537 |
| keywords[9].display_name | Sample (material) |
| keywords[10].id | https://openalex.org/keywords/scheme |
| keywords[10].score | 0.43788382411003113 |
| keywords[10].display_name | Scheme (mathematics) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.31913942098617554 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/game-theory |
| keywords[12].score | 0.2923738956451416 |
| keywords[12].display_name | Game theory |
| keywords[13].id | https://openalex.org/keywords/mathematical-economics |
| keywords[13].score | 0.26577067375183105 |
| keywords[13].display_name | Mathematical economics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.15220507979393005 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.10943824052810669 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/economics |
| keywords[16].score | 0.09567561745643616 |
| keywords[16].display_name | Economics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.08923 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.08923 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.08923 |
| locations[1].id | doi:10.48550/arxiv.2309.08923 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.08923 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089217677 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-1239-5804 |
| authorships[0].author.display_name | Liuqing Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Liuqing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101703906 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3805-7021 |
| authorships[1].author.display_name | Yongdao Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Yongdao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069556286 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0538-4651 |
| authorships[2].author.display_name | Haoda Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fu, Haoda |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059659163 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1954-6241 |
| authorships[3].author.display_name | Min‐Qian Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Min-Qian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5019036867 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4642-1447 |
| authorships[4].author.display_name | Wei Zheng |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zheng, Wei |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.08923 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11798 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.8808000087738037 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Optimal Experimental Design Methods |
| related_works | https://openalex.org/W3204498529, https://openalex.org/W2187416006, https://openalex.org/W1981630704, https://openalex.org/W2134138723, https://openalex.org/W1894585900, https://openalex.org/W2006581498, https://openalex.org/W1538386239, https://openalex.org/W3176033544, https://openalex.org/W2002199716, https://openalex.org/W2012494228 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.08923 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.08923 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.08923 |
| primary_location.id | pmh:oai:arXiv.org:2309.08923 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.08923 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.08923 |
| publication_date | 2023-09-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 128 |
| abstract_inverted_index.a | 4, 18, 81, 86, 134 |
| abstract_inverted_index.C. | 258 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 148, 207 |
| abstract_inverted_index.an | 150 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.be | 155 |
| abstract_inverted_index.in | 6, 17, 48, 61, 80, 181, 237 |
| abstract_inverted_index.is | 2, 125, 131, 176, 244, 254 |
| abstract_inverted_index.it | 42, 115, 243 |
| abstract_inverted_index.of | 92, 110, 137, 146, 163, 184, 186, 197, 201, 239 |
| abstract_inverted_index.on | 100, 178 |
| abstract_inverted_index.or | 94, 107 |
| abstract_inverted_index.to | 8, 15, 30, 118, 132, 140, 157 |
| abstract_inverted_index.we | 102 |
| abstract_inverted_index.$d$ | 124 |
| abstract_inverted_index.For | 40 |
| abstract_inverted_index.Our | 173 |
| abstract_inverted_index.SRS | 236 |
| abstract_inverted_index.and | 13, 37, 215, 226, 262 |
| abstract_inverted_index.are | 103, 213 |
| abstract_inverted_index.but | 76 |
| abstract_inverted_index.can | 154, 216 |
| abstract_inverted_index.for | 46, 142, 194, 256 |
| abstract_inverted_index.has | 27, 72 |
| abstract_inverted_index.how | 198 |
| abstract_inverted_index.its | 25, 68 |
| abstract_inverted_index.our | 231 |
| abstract_inverted_index.the | 22, 55, 90, 105, 111, 120, 138, 143, 164, 168, 182, 190, 195, 199, 205, 210, 220, 257, 263 |
| abstract_inverted_index.$d!$ | 93 |
| abstract_inverted_index.9/11 | 264 |
| abstract_inverted_index.Both | 224 |
| abstract_inverted_index.SRS. | 249 |
| abstract_inverted_index.also | 245 |
| abstract_inverted_index.been | 28, 73 |
| abstract_inverted_index.both | 11 |
| abstract_inverted_index.data | 252 |
| abstract_inverted_index.etc. | 66 |
| abstract_inverted_index.find | 149 |
| abstract_inverted_index.list | 145 |
| abstract_inverted_index.long | 74 |
| abstract_inverted_index.more | 160 |
| abstract_inverted_index.much | 159 |
| abstract_inverted_index.node | 59 |
| abstract_inverted_index.real | 251 |
| abstract_inverted_index.show | 208, 229 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.take | 133 |
| abstract_inverted_index.than | 167, 248 |
| abstract_inverted_index.that | 209, 230 |
| abstract_inverted_index.when | 123 |
| abstract_inverted_index.$2^d$ | 95 |
| abstract_inverted_index.Hence | 114 |
| abstract_inverted_index.areas | 32 |
| abstract_inverted_index.based | 177 |
| abstract_inverted_index.costs | 14 |
| abstract_inverted_index.field | 183 |
| abstract_inverted_index.gains | 12 |
| abstract_inverted_index.game, | 84 |
| abstract_inverted_index.game. | 20 |
| abstract_inverted_index.heavy | 69 |
| abstract_inverted_index.local | 51 |
| abstract_inverted_index.model | 52 |
| abstract_inverted_index.other | 31 |
| abstract_inverted_index.study | 196 |
| abstract_inverted_index.terms | 238 |
| abstract_inverted_index.value | 1, 88, 122, 166 |
| abstract_inverted_index.would | 203 |
| abstract_inverted_index.yield | 158 |
| abstract_inverted_index.(DOE), | 188 |
| abstract_inverted_index.(SRS). | 172 |
| abstract_inverted_index.affect | 204 |
| abstract_inverted_index.burden | 71 |
| abstract_inverted_index.common | 129 |
| abstract_inverted_index.design | 185 |
| abstract_inverted_index.fairly | 9 |
| abstract_inverted_index.faster | 247 |
| abstract_inverted_index.large. | 127 |
| abstract_inverted_index.random | 135, 170 |
| abstract_inverted_index.rarely | 77 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.remedy | 130 |
| abstract_inverted_index.sample | 136 |
| abstract_inverted_index.scheme | 153, 175, 234 |
| abstract_inverted_index.simple | 169 |
| abstract_inverted_index.social | 62 |
| abstract_inverted_index.system | 261 |
| abstract_inverted_index.taking | 104 |
| abstract_inverted_index.value. | 113, 223 |
| abstract_inverted_index.Lastly, | 250 |
| abstract_inverted_index.Shapley | 0, 87, 112, 121, 165, 222 |
| abstract_inverted_index.becomes | 116 |
| abstract_inverted_index.concept | 5 |
| abstract_inverted_index.designs | 193 |
| abstract_inverted_index.elegans | 259 |
| abstract_inverted_index.machine | 38, 57 |
| abstract_inverted_index.models, | 65 |
| abstract_inverted_index.nervous | 260 |
| abstract_inverted_index.output. | 206 |
| abstract_inverted_index.players | 16 |
| abstract_inverted_index.recover | 219 |
| abstract_inverted_index.results | 228 |
| abstract_inverted_index.towards | 54 |
| abstract_inverted_index.values, | 98 |
| abstract_inverted_index.whether | 101 |
| abstract_inverted_index.However, | 67 |
| abstract_inverted_index.accurate | 161 |
| abstract_inverted_index.advanced | 151 |
| abstract_inverted_index.analysis | 253 |
| abstract_inverted_index.complete | 144 |
| abstract_inverted_index.decades, | 24 |
| abstract_inverted_index.designed | 156 |
| abstract_inverted_index.example, | 41 |
| abstract_inverted_index.extended | 29 |
| abstract_inverted_index.marginal | 96 |
| abstract_inverted_index.network, | 63 |
| abstract_inverted_index.network. | 266 |
| abstract_inverted_index.obtained | 211 |
| abstract_inverted_index.original | 221 |
| abstract_inverted_index.problems | 47 |
| abstract_inverted_index.produces | 43 |
| abstract_inverted_index.requires | 89 |
| abstract_inverted_index.sampling | 152, 171, 174, 233 |
| abstract_inverted_index.slightly | 246 |
| abstract_inverted_index.DOE-based | 232 |
| abstract_inverted_index.accuracy. | 241 |
| abstract_inverted_index.analysis, | 50 |
| abstract_inverted_index.calculate | 119 |
| abstract_inverted_index.coalition | 19, 83 |
| abstract_inverted_index.conducted | 255 |
| abstract_inverted_index.depending | 99 |
| abstract_inverted_index.estimates | 212 |
| abstract_inverted_index.learning, | 58 |
| abstract_inverted_index.learning. | 39 |
| abstract_inverted_index.orderings | 200 |
| abstract_inverted_index.solutions | 45 |
| abstract_inverted_index.sometimes | 217 |
| abstract_inverted_index.surrogate | 141 |
| abstract_inverted_index.terrorist | 265 |
| abstract_inverted_index.unbiased, | 214 |
| abstract_inverted_index.$d$-player | 82 |
| abstract_inverted_index.components | 202 |
| abstract_inverted_index.distribute | 10 |
| abstract_inverted_index.estimation | 162, 240 |
| abstract_inverted_index.evaluation | 91 |
| abstract_inverted_index.importance | 60 |
| abstract_inverted_index.infeasible | 117 |
| abstract_inverted_index.marketing, | 35 |
| abstract_inverted_index.originally | 3 |
| abstract_inverted_index.reasonable | 44 |
| abstract_inverted_index.reasonably | 126 |
| abstract_inverted_index.recognized | 75 |
| abstract_inverted_index.structures | 180 |
| abstract_inverted_index.application | 26 |
| abstract_inverted_index.attribution | 64 |
| abstract_inverted_index.calculating | 85 |
| abstract_inverted_index.combination | 108 |
| abstract_inverted_index.engineering | 36 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.explanation | 53 |
| abstract_inverted_index.formulation | 109 |
| abstract_inverted_index.outperforms | 235 |
| abstract_inverted_index.permutation | 106 |
| abstract_inverted_index.sensitivity | 49 |
| abstract_inverted_index.simulations | 227 |
| abstract_inverted_index.theoretical | 225 |
| abstract_inverted_index.contribution | 97 |
| abstract_inverted_index.econometrics | 7 |
| abstract_inverted_index.experimental | 192 |
| abstract_inverted_index.particularly | 189 |
| abstract_inverted_index.permutations | 139 |
| abstract_inverted_index.Specifically, | 79 |
| abstract_inverted_index.Surprisingly, | 242 |
| abstract_inverted_index.combinatorial | 179 |
| abstract_inverted_index.computational | 70 |
| abstract_inverted_index.interpretable | 56 |
| abstract_inverted_index.investigated. | 78 |
| abstract_inverted_index.permutations. | 147 |
| abstract_inverted_index.deterministically | 218 |
| abstract_inverted_index.order-of-addition | 191 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |