Fast ground penetrating radar dual-parameter full waveform inversion method accelerated by hybrid compilation of CUDA kernel function and PyTorch Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.20513
This study proposes a high-performance dual-parameter full waveform inversion framework (FWI) for ground-penetrating radar (GPR), accelerated through the hybrid compilation of CUDA kernel functions and PyTorch. The method leverages the computational efficiency of GPU programming while preserving the flexibility and usability of Python-based deep learning frameworks. By integrating customized CUDA kernels into PyTorch's automatic differentiation mechanism, the framework enables accurate and efficient inversion of both dielectric permittivity and electrical conductivity. Experimental evaluations on synthetic data and real wavefield data demonstrate that the proposed method achieves dual-parameter FWI for GPR data while maintaining high accuracy. Moreover, the framework is flexible and extensible, supporting optional regularization strategies such as total variation and multi-scale inversion. These features make the proposed approach a practical and scalable framework for rapid GPR-based subsurface imaging in applications including civil engineering, environmental monitoring, and geophysical exploration.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.20513
- https://arxiv.org/pdf/2506.20513
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4414989781
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414989781Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.20513Digital Object Identifier
- Title
-
Fast ground penetrating radar dual-parameter full waveform inversion method accelerated by hybrid compilation of CUDA kernel function and PyTorchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-25Full publication date if available
- Authors
-
Lei Liu, Chao Song, Liangsheng He, Silin Wang, Xuan Feng, Cai LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.20513Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.20513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.20513Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4414989781 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.20513 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.20513 |
| ids.openalex | https://openalex.org/W4414989781 |
| fwci | |
| type | preprint |
| title | Fast ground penetrating radar dual-parameter full waveform inversion method accelerated by hybrid compilation of CUDA kernel function and PyTorch |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11609 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Geophysical Methods and Applications |
| topics[1].id | https://openalex.org/T11038 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9761000275611877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Advanced SAR Imaging Techniques |
| topics[2].id | https://openalex.org/T11739 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9621000289916992 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Microwave Imaging and Scattering Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.20513 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.20513 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.20513 |
| locations[1].id | doi:10.48550/arxiv.2506.20513 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.20513 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5033491078 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3168-7303 |
| authorships[0].author.display_name | Lei Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Lei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020237777 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1087-8701 |
| authorships[1].author.display_name | Chao Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Song, Chao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006101106 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7305-0653 |
| authorships[2].author.display_name | Liangsheng He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He, Liangsheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039980425 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-9440-0123 |
| authorships[3].author.display_name | Silin Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Silin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5075803142 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7451-9145 |
| authorships[4].author.display_name | Xuan Feng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng, Xuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100645959 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7852-3894 |
| authorships[5].author.display_name | Cai Liu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Liu, Cai |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.20513 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | Fast ground penetrating radar dual-parameter full waveform inversion method accelerated by hybrid compilation of CUDA kernel function and PyTorch |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11609 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Geophysical Methods and Applications |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.20513 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.20513 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.20513 |
| primary_location.id | pmh:oai:arXiv.org:2506.20513 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.20513 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.20513 |
| publication_date | 2025-06-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 118 |
| abstract_inverted_index.By | 46 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.in | 128 |
| abstract_inverted_index.is | 97 |
| abstract_inverted_index.of | 20, 32, 41, 63 |
| abstract_inverted_index.on | 72 |
| abstract_inverted_index.FWI | 86 |
| abstract_inverted_index.GPR | 88 |
| abstract_inverted_index.GPU | 33 |
| abstract_inverted_index.The | 26 |
| abstract_inverted_index.and | 24, 39, 60, 67, 75, 99, 109, 120, 135 |
| abstract_inverted_index.for | 11, 87, 123 |
| abstract_inverted_index.the | 17, 29, 37, 56, 81, 95, 115 |
| abstract_inverted_index.CUDA | 21, 49 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 64 |
| abstract_inverted_index.data | 74, 78, 89 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.full | 6 |
| abstract_inverted_index.high | 92 |
| abstract_inverted_index.into | 51 |
| abstract_inverted_index.make | 114 |
| abstract_inverted_index.real | 76 |
| abstract_inverted_index.such | 105 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.(FWI) | 10 |
| abstract_inverted_index.These | 112 |
| abstract_inverted_index.civil | 131 |
| abstract_inverted_index.radar | 13 |
| abstract_inverted_index.rapid | 124 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.total | 107 |
| abstract_inverted_index.while | 35, 90 |
| abstract_inverted_index.(GPR), | 14 |
| abstract_inverted_index.hybrid | 18 |
| abstract_inverted_index.kernel | 22 |
| abstract_inverted_index.method | 27, 83 |
| abstract_inverted_index.enables | 58 |
| abstract_inverted_index.imaging | 127 |
| abstract_inverted_index.kernels | 50 |
| abstract_inverted_index.through | 16 |
| abstract_inverted_index.PyTorch. | 25 |
| abstract_inverted_index.accurate | 59 |
| abstract_inverted_index.achieves | 84 |
| abstract_inverted_index.approach | 117 |
| abstract_inverted_index.features | 113 |
| abstract_inverted_index.flexible | 98 |
| abstract_inverted_index.learning | 44 |
| abstract_inverted_index.optional | 102 |
| abstract_inverted_index.proposed | 82, 116 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.scalable | 121 |
| abstract_inverted_index.waveform | 7 |
| abstract_inverted_index.GPR-based | 125 |
| abstract_inverted_index.Moreover, | 94 |
| abstract_inverted_index.PyTorch's | 52 |
| abstract_inverted_index.accuracy. | 93 |
| abstract_inverted_index.automatic | 53 |
| abstract_inverted_index.efficient | 61 |
| abstract_inverted_index.framework | 9, 57, 96, 122 |
| abstract_inverted_index.functions | 23 |
| abstract_inverted_index.including | 130 |
| abstract_inverted_index.inversion | 8, 62 |
| abstract_inverted_index.leverages | 28 |
| abstract_inverted_index.practical | 119 |
| abstract_inverted_index.synthetic | 73 |
| abstract_inverted_index.usability | 40 |
| abstract_inverted_index.variation | 108 |
| abstract_inverted_index.wavefield | 77 |
| abstract_inverted_index.customized | 48 |
| abstract_inverted_index.dielectric | 65 |
| abstract_inverted_index.efficiency | 31 |
| abstract_inverted_index.electrical | 68 |
| abstract_inverted_index.inversion. | 111 |
| abstract_inverted_index.mechanism, | 55 |
| abstract_inverted_index.preserving | 36 |
| abstract_inverted_index.strategies | 104 |
| abstract_inverted_index.subsurface | 126 |
| abstract_inverted_index.supporting | 101 |
| abstract_inverted_index.accelerated | 15 |
| abstract_inverted_index.compilation | 19 |
| abstract_inverted_index.demonstrate | 79 |
| abstract_inverted_index.evaluations | 71 |
| abstract_inverted_index.extensible, | 100 |
| abstract_inverted_index.flexibility | 38 |
| abstract_inverted_index.frameworks. | 45 |
| abstract_inverted_index.geophysical | 136 |
| abstract_inverted_index.integrating | 47 |
| abstract_inverted_index.maintaining | 91 |
| abstract_inverted_index.monitoring, | 134 |
| abstract_inverted_index.multi-scale | 110 |
| abstract_inverted_index.programming | 34 |
| abstract_inverted_index.Experimental | 70 |
| abstract_inverted_index.Python-based | 42 |
| abstract_inverted_index.applications | 129 |
| abstract_inverted_index.engineering, | 132 |
| abstract_inverted_index.exploration. | 137 |
| abstract_inverted_index.permittivity | 66 |
| abstract_inverted_index.computational | 30 |
| abstract_inverted_index.conductivity. | 69 |
| abstract_inverted_index.environmental | 133 |
| abstract_inverted_index.dual-parameter | 5, 85 |
| abstract_inverted_index.regularization | 103 |
| abstract_inverted_index.differentiation | 54 |
| abstract_inverted_index.high-performance | 4 |
| abstract_inverted_index.ground-penetrating | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |