Fast, high-quality pseudo random number generators for heterogeneous computing Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1051/epjconf/202429511010
Random number generation is key to many applications in a wide variety of disciplines. Depending on the application, the quality of the random numbers from a particular generator can directly impact both computational performance and critically the outcome of the calculation. High-energy physics applications use Monte Carlo simulations and machine learning widely, which both require high-quality random numbers. In recent years, to meet increasing performance requirements, many high-energy physics workloads leverage GPU acceleration. While on a CPU, there exist a wide variety of generators with different performance and quality characteristics, the same cannot be stated for GPU and FPGA accelerators. On GPUs, the most common implementation is provided by cuRAND - an NVIDIA library that is not open source or peer reviewed by the scientific community. The highest-quality generator implemented in cuRAND is a version of the Mersenne Twister. Given the availability of better and faster random number generators, high-energy physics moved away from Mersenne Twister several years ago and nowadays MIXMAX is the standard generator in Geant4 via CLHEP. The MIXMAX original design supports parallel streams with a seeding algorithm that makes it especially suited for GPU and FPGA where extreme parallelism is a key factor. In this study we implement the MIXMAX generator on both architectures and analyze its suitability and applicability for accelerator implementations. We evaluated the results against “Mersenne Twister for a Graphic Processor” (MTGP32) on GPUs which resulted in 5, 13 and 14 times higher throughput when a 240, 17 and 8 sized vector space was used respectively. The MIXMAX generator coded in VHDL and implemented on Xilinx Ultrascale+ FPGAs, requires 50% fewer total Look Up Tables (LUTs) compared to a 32-bit Mersenne Twister (MT-19337), or 75% fewer LUTs per output bit. In summary, the state-of-the art MIXMAX pseudo random number generator has been implemented on GPU and FPGA platforms and the performance benchmarked.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/epjconf/202429511010
- https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396661767
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396661767Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/epjconf/202429511010Digital Object Identifier
- Title
-
Fast, high-quality pseudo random number generators for heterogeneous computingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Marco Barbone, Georgi Gaydadjiev, Alexander Howard, Wayne Luk, George Savvidy, Konstantin Savvidy, A. Rose, A. TapperList of authors in order
- Landing page
-
https://doi.org/10.1051/epjconf/202429511010Publisher landing page
- PDF URL
-
https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdfDirect OA link when available
- Concepts
-
Computer science, Random number generation, Quality (philosophy), Parallel computing, Statistical physics, Physics, Algorithm, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396661767 |
|---|---|
| doi | https://doi.org/10.1051/epjconf/202429511010 |
| ids.doi | https://doi.org/10.1051/epjconf/202429511010 |
| ids.openalex | https://openalex.org/W4396661767 |
| fwci | 0.53015756 |
| type | article |
| title | Fast, high-quality pseudo random number generators for heterogeneous computing |
| biblio.issue | |
| biblio.volume | 295 |
| biblio.last_page | 11010 |
| biblio.first_page | 11010 |
| topics[0].id | https://openalex.org/T11017 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Chaos-based Image/Signal Encryption |
| topics[1].id | https://openalex.org/T11693 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Cryptography and Residue Arithmetic |
| topics[2].id | https://openalex.org/T12162 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Cellular Automata and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.49612054228782654 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C201866948 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4948813319206238 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228206 |
| concepts[1].display_name | Random number generation |
| concepts[2].id | https://openalex.org/C2779530757 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47683945298194885 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[2].display_name | Quality (philosophy) |
| concepts[3].id | https://openalex.org/C173608175 |
| concepts[3].level | 1 |
| concepts[3].score | 0.34218525886535645 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[3].display_name | Parallel computing |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3350297510623932 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3147464096546173 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.22399011254310608 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0783957839012146 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.49612054228782654 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/random-number-generation |
| keywords[1].score | 0.4948813319206238 |
| keywords[1].display_name | Random number generation |
| keywords[2].id | https://openalex.org/keywords/quality |
| keywords[2].score | 0.47683945298194885 |
| keywords[2].display_name | Quality (philosophy) |
| keywords[3].id | https://openalex.org/keywords/parallel-computing |
| keywords[3].score | 0.34218525886535645 |
| keywords[3].display_name | Parallel computing |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.3350297510623932 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.3147464096546173 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.22399011254310608 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[7].score | 0.0783957839012146 |
| keywords[7].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.1051/epjconf/202429511010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19068271 |
| locations[0].source.issn | 2100-014X, 2101-6275 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2100-014X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EPJ Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EPJ Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/epjconf/202429511010 |
| locations[1].id | pmh:oai:doaj.org/article:11ee4419c80f4082977e3983a7df7eb2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | EPJ Web of Conferences, Vol 295, p 11010 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/11ee4419c80f4082977e3983a7df7eb2 |
| locations[2].id | pmh:oai:edpsciences.org:dkey/10.1051/epjconf/202429511010 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400744 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[2].source.host_organization | https://openalex.org/I8488066 |
| locations[2].source.host_organization_name | Chiba Institute of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | https://doi.org/10.1051/epjconf/202429511010 |
| locations[2].landing_page_url | |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058151853 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3495-7997 |
| authorships[0].author.display_name | Marco Barbone |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[0].affiliations[0].raw_affiliation_string | Imperial College London, South Kensington, London, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I47508984 |
| authorships[0].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Imperial College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marco Barbone |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Imperial College London, South Kensington, London, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5075050234 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3678-7007 |
| authorships[1].author.display_name | Georgi Gaydadjiev |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169381384 |
| authorships[1].affiliations[0].raw_affiliation_string | Bernoulli Institute, University of Groningen, Nijenborgh 9, Groningen 9747 AG, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I169381384 |
| authorships[1].institutions[0].ror | https://ror.org/012p63287 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169381384 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University of Groningen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Georgi Gaydadjiev |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bernoulli Institute, University of Groningen, Nijenborgh 9, Groningen 9747 AG, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5104181804 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-5943-0967 |
| authorships[2].author.display_name | Alexander Howard |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[2].affiliations[0].raw_affiliation_string | Imperial College London, South Kensington, London, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I47508984 |
| authorships[2].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Imperial College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alexander Howard |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Imperial College London, South Kensington, London, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5057940557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6750-927X |
| authorships[3].author.display_name | Wayne Luk |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[3].affiliations[0].raw_affiliation_string | Imperial College London, South Kensington, London, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I47508984 |
| authorships[3].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Imperial College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wayne Luk |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Imperial College London, South Kensington, London, United Kingdom |
| authorships[4].author.id | https://openalex.org/A5050402691 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0699-570X |
| authorships[4].author.display_name | George Savvidy |
| authorships[4].countries | GR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I203474044, https://openalex.org/I4210133773 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Nuclear and Particle Physics, Demokritos National Research Center, Ag. Paraskevi, GR15342, Athens, Greece |
| authorships[4].institutions[0].id | https://openalex.org/I4210133773 |
| authorships[4].institutions[0].ror | https://ror.org/03znpfq81 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I203474044, https://openalex.org/I4210133773 |
| authorships[4].institutions[0].country_code | GR |
| authorships[4].institutions[0].display_name | Institute of Nuclear and Particle Physics |
| authorships[4].institutions[1].id | https://openalex.org/I203474044 |
| authorships[4].institutions[1].ror | https://ror.org/038jp4m40 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I203474044 |
| authorships[4].institutions[1].country_code | GR |
| authorships[4].institutions[1].display_name | National Centre of Scientific Research "Demokritos" |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | George Savvidy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Nuclear and Particle Physics, Demokritos National Research Center, Ag. Paraskevi, GR15342, Athens, Greece |
| authorships[5].author.id | https://openalex.org/A5049328817 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Konstantin Savvidy |
| authorships[5].countries | GR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I203474044, https://openalex.org/I4210133773 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Nuclear and Particle Physics, Demokritos National Research Center, Ag. Paraskevi, GR15342, Athens, Greece |
| authorships[5].institutions[0].id | https://openalex.org/I4210133773 |
| authorships[5].institutions[0].ror | https://ror.org/03znpfq81 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I203474044, https://openalex.org/I4210133773 |
| authorships[5].institutions[0].country_code | GR |
| authorships[5].institutions[0].display_name | Institute of Nuclear and Particle Physics |
| authorships[5].institutions[1].id | https://openalex.org/I203474044 |
| authorships[5].institutions[1].ror | https://ror.org/038jp4m40 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I203474044 |
| authorships[5].institutions[1].country_code | GR |
| authorships[5].institutions[1].display_name | National Centre of Scientific Research "Demokritos" |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Konstantin Savvidy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Nuclear and Particle Physics, Demokritos National Research Center, Ag. Paraskevi, GR15342, Athens, Greece |
| authorships[6].author.id | https://openalex.org/A5015775002 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9773-550X |
| authorships[6].author.display_name | A. Rose |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[6].affiliations[0].raw_affiliation_string | Imperial College London, South Kensington, London, United Kingdom |
| authorships[6].institutions[0].id | https://openalex.org/I47508984 |
| authorships[6].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | Imperial College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Andrew Rose |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Imperial College London, South Kensington, London, United Kingdom |
| authorships[7].author.id | https://openalex.org/A5064345784 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4543-864X |
| authorships[7].author.display_name | A. Tapper |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[7].affiliations[0].raw_affiliation_string | Imperial College London, South Kensington, London, United Kingdom |
| authorships[7].institutions[0].id | https://openalex.org/I47508984 |
| authorships[7].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | Imperial College London |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Alexander Tapper |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Imperial College London, South Kensington, London, United Kingdom |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast, high-quality pseudo random number generators for heterogeneous computing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11017 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Chaos-based Image/Signal Encryption |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885, https://openalex.org/W2298861036, https://openalex.org/W3148032049 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1051/epjconf/202429511010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19068271 |
| best_oa_location.source.issn | 2100-014X, 2101-6275 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2100-014X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EPJ Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EPJ Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/epjconf/202429511010 |
| primary_location.id | doi:10.1051/epjconf/202429511010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19068271 |
| primary_location.source.issn | 2100-014X, 2101-6275 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2100-014X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EPJ Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_chep2024_11010.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EPJ Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/epjconf/202429511010 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3022870279, https://openalex.org/W2090824272, https://openalex.org/W1976766923, https://openalex.org/W3142659981, https://openalex.org/W2095595785, https://openalex.org/W1548197644, https://openalex.org/W2229326478, https://openalex.org/W3032008729, https://openalex.org/W2133193573, https://openalex.org/W1797634622, https://openalex.org/W2990714382 |
| referenced_works_count | 11 |
| abstract_inverted_index.- | 110 |
| abstract_inverted_index.8 | 246 |
| abstract_inverted_index.a | 9, 25, 75, 79, 133, 178, 194, 225, 242, 275 |
| abstract_inverted_index.13 | 235 |
| abstract_inverted_index.14 | 237 |
| abstract_inverted_index.17 | 244 |
| abstract_inverted_index.5, | 234 |
| abstract_inverted_index.In | 58, 197, 287 |
| abstract_inverted_index.On | 100 |
| abstract_inverted_index.Up | 270 |
| abstract_inverted_index.We | 217 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.be | 93 |
| abstract_inverted_index.by | 108, 122 |
| abstract_inverted_index.in | 8, 130, 166, 233, 257 |
| abstract_inverted_index.is | 3, 106, 115, 132, 162, 193 |
| abstract_inverted_index.it | 183 |
| abstract_inverted_index.of | 12, 20, 38, 82, 135, 142 |
| abstract_inverted_index.on | 15, 74, 205, 229, 261, 300 |
| abstract_inverted_index.or | 119, 280 |
| abstract_inverted_index.to | 5, 61, 274 |
| abstract_inverted_index.we | 200 |
| abstract_inverted_index.50% | 266 |
| abstract_inverted_index.75% | 281 |
| abstract_inverted_index.GPU | 71, 96, 187, 301 |
| abstract_inverted_index.The | 126, 170, 253 |
| abstract_inverted_index.ago | 158 |
| abstract_inverted_index.and | 34, 48, 87, 97, 144, 159, 188, 208, 212, 236, 245, 259, 302, 305 |
| abstract_inverted_index.art | 291 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.for | 95, 186, 214, 224 |
| abstract_inverted_index.has | 297 |
| abstract_inverted_index.its | 210 |
| abstract_inverted_index.key | 4, 195 |
| abstract_inverted_index.not | 116 |
| abstract_inverted_index.per | 284 |
| abstract_inverted_index.the | 16, 18, 21, 36, 39, 90, 102, 123, 136, 140, 163, 202, 219, 289, 306 |
| abstract_inverted_index.use | 44 |
| abstract_inverted_index.via | 168 |
| abstract_inverted_index.was | 250 |
| abstract_inverted_index.240, | 243 |
| abstract_inverted_index.CPU, | 76 |
| abstract_inverted_index.FPGA | 98, 189, 303 |
| abstract_inverted_index.GPUs | 230 |
| abstract_inverted_index.LUTs | 283 |
| abstract_inverted_index.Look | 269 |
| abstract_inverted_index.VHDL | 258 |
| abstract_inverted_index.away | 152 |
| abstract_inverted_index.been | 298 |
| abstract_inverted_index.bit. | 286 |
| abstract_inverted_index.both | 31, 53, 206 |
| abstract_inverted_index.from | 24, 153 |
| abstract_inverted_index.many | 6, 66 |
| abstract_inverted_index.meet | 62 |
| abstract_inverted_index.most | 103 |
| abstract_inverted_index.open | 117 |
| abstract_inverted_index.peer | 120 |
| abstract_inverted_index.same | 91 |
| abstract_inverted_index.that | 114, 181 |
| abstract_inverted_index.this | 198 |
| abstract_inverted_index.used | 251 |
| abstract_inverted_index.when | 241 |
| abstract_inverted_index.wide | 10, 80 |
| abstract_inverted_index.with | 84, 177 |
| abstract_inverted_index.Carlo | 46 |
| abstract_inverted_index.GPUs, | 101 |
| abstract_inverted_index.Given | 139 |
| abstract_inverted_index.Monte | 45 |
| abstract_inverted_index.While | 73 |
| abstract_inverted_index.coded | 256 |
| abstract_inverted_index.exist | 78 |
| abstract_inverted_index.fewer | 267, 282 |
| abstract_inverted_index.makes | 182 |
| abstract_inverted_index.moved | 151 |
| abstract_inverted_index.sized | 247 |
| abstract_inverted_index.space | 249 |
| abstract_inverted_index.study | 199 |
| abstract_inverted_index.there | 77 |
| abstract_inverted_index.times | 238 |
| abstract_inverted_index.total | 268 |
| abstract_inverted_index.where | 190 |
| abstract_inverted_index.which | 52, 231 |
| abstract_inverted_index.years | 157 |
| abstract_inverted_index.(LUTs) | 272 |
| abstract_inverted_index.32-bit | 276 |
| abstract_inverted_index.CLHEP. | 169 |
| abstract_inverted_index.FPGAs, | 264 |
| abstract_inverted_index.Geant4 | 167 |
| abstract_inverted_index.MIXMAX | 161, 171, 203, 254, 292 |
| abstract_inverted_index.NVIDIA | 112 |
| abstract_inverted_index.Random | 0 |
| abstract_inverted_index.Tables | 271 |
| abstract_inverted_index.Xilinx | 262 |
| abstract_inverted_index.better | 143 |
| abstract_inverted_index.cannot | 92 |
| abstract_inverted_index.common | 104 |
| abstract_inverted_index.cuRAND | 109, 131 |
| abstract_inverted_index.design | 173 |
| abstract_inverted_index.faster | 145 |
| abstract_inverted_index.higher | 239 |
| abstract_inverted_index.impact | 30 |
| abstract_inverted_index.number | 1, 147, 295 |
| abstract_inverted_index.output | 285 |
| abstract_inverted_index.pseudo | 293 |
| abstract_inverted_index.random | 22, 56, 146, 294 |
| abstract_inverted_index.recent | 59 |
| abstract_inverted_index.source | 118 |
| abstract_inverted_index.stated | 94 |
| abstract_inverted_index.suited | 185 |
| abstract_inverted_index.vector | 248 |
| abstract_inverted_index.years, | 60 |
| abstract_inverted_index.Graphic | 226 |
| abstract_inverted_index.Twister | 155, 223, 278 |
| abstract_inverted_index.against | 221 |
| abstract_inverted_index.analyze | 209 |
| abstract_inverted_index.extreme | 191 |
| abstract_inverted_index.factor. | 196 |
| abstract_inverted_index.library | 113 |
| abstract_inverted_index.machine | 49 |
| abstract_inverted_index.numbers | 23 |
| abstract_inverted_index.outcome | 37 |
| abstract_inverted_index.physics | 42, 68, 150 |
| abstract_inverted_index.quality | 19, 88 |
| abstract_inverted_index.require | 54 |
| abstract_inverted_index.results | 220 |
| abstract_inverted_index.seeding | 179 |
| abstract_inverted_index.several | 156 |
| abstract_inverted_index.streams | 176 |
| abstract_inverted_index.variety | 11, 81 |
| abstract_inverted_index.version | 134 |
| abstract_inverted_index.widely, | 51 |
| abstract_inverted_index.(MTGP32) | 228 |
| abstract_inverted_index.Mersenne | 137, 154, 277 |
| abstract_inverted_index.Twister. | 138 |
| abstract_inverted_index.compared | 273 |
| abstract_inverted_index.directly | 29 |
| abstract_inverted_index.learning | 50 |
| abstract_inverted_index.leverage | 70 |
| abstract_inverted_index.nowadays | 160 |
| abstract_inverted_index.numbers. | 57 |
| abstract_inverted_index.original | 172 |
| abstract_inverted_index.parallel | 175 |
| abstract_inverted_index.provided | 107 |
| abstract_inverted_index.requires | 265 |
| abstract_inverted_index.resulted | 232 |
| abstract_inverted_index.reviewed | 121 |
| abstract_inverted_index.standard | 164 |
| abstract_inverted_index.summary, | 288 |
| abstract_inverted_index.supports | 174 |
| abstract_inverted_index.Depending | 14 |
| abstract_inverted_index.algorithm | 180 |
| abstract_inverted_index.different | 85 |
| abstract_inverted_index.evaluated | 218 |
| abstract_inverted_index.generator | 27, 128, 165, 204, 255, 296 |
| abstract_inverted_index.implement | 201 |
| abstract_inverted_index.platforms | 304 |
| abstract_inverted_index.workloads | 69 |
| abstract_inverted_index.community. | 125 |
| abstract_inverted_index.critically | 35 |
| abstract_inverted_index.especially | 184 |
| abstract_inverted_index.generation | 2 |
| abstract_inverted_index.generators | 83 |
| abstract_inverted_index.increasing | 63 |
| abstract_inverted_index.particular | 26 |
| abstract_inverted_index.scientific | 124 |
| abstract_inverted_index.throughput | 240 |
| abstract_inverted_index.(MT-19337), | 279 |
| abstract_inverted_index.High-energy | 41 |
| abstract_inverted_index.Ultrascale+ | 263 |
| abstract_inverted_index.accelerator | 215 |
| abstract_inverted_index.generators, | 148 |
| abstract_inverted_index.high-energy | 67, 149 |
| abstract_inverted_index.implemented | 129, 260, 299 |
| abstract_inverted_index.parallelism | 192 |
| abstract_inverted_index.performance | 33, 64, 86, 307 |
| abstract_inverted_index.simulations | 47 |
| abstract_inverted_index.suitability | 211 |
| abstract_inverted_index.“Mersenne | 222 |
| abstract_inverted_index.Processor” | 227 |
| abstract_inverted_index.application, | 17 |
| abstract_inverted_index.applications | 7, 43 |
| abstract_inverted_index.availability | 141 |
| abstract_inverted_index.benchmarked. | 308 |
| abstract_inverted_index.calculation. | 40 |
| abstract_inverted_index.disciplines. | 13 |
| abstract_inverted_index.high-quality | 55 |
| abstract_inverted_index.state-of-the | 290 |
| abstract_inverted_index.acceleration. | 72 |
| abstract_inverted_index.accelerators. | 99 |
| abstract_inverted_index.applicability | 213 |
| abstract_inverted_index.architectures | 207 |
| abstract_inverted_index.computational | 32 |
| abstract_inverted_index.requirements, | 65 |
| abstract_inverted_index.respectively. | 252 |
| abstract_inverted_index.implementation | 105 |
| abstract_inverted_index.highest-quality | 127 |
| abstract_inverted_index.characteristics, | 89 |
| abstract_inverted_index.implementations. | 216 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.54592764 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |