Fast Machine Learning for Quantum Control of Microwave Qudits on Edge Hardware Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.03323
Quantum optimal control is a promising approach to improve the accuracy of quantum gates, but it relies on complex algorithms to determine the best control settings. CPU or GPU-based approaches often have delays that are too long to be applied in practice. It is paramount to have systems with extremely low delays to quickly and with high fidelity adjust quantum hardware settings, where fidelity is defined as overlap with a target quantum state. Here, we utilize machine learning (ML) models to determine control-pulse parameters for preparing Selective Number-dependent Arbitrary Phase (SNAP) gates in microwave cavity qudits, which are multi-level quantum systems that serve as elementary computation units for quantum computing. The methodology involves data generation using classical optimization techniques, ML model development, design space exploration, and quantization for hardware implementation. Our results demonstrate the efficacy of the proposed approach, with optimized models achieving low gate trace infidelity near $10^{-3}$ and efficient utilization of programmable logic resources.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.03323
- https://arxiv.org/pdf/2506.03323
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416072034
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416072034Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.03323Digital Object Identifier
- Title
-
Fast Machine Learning for Quantum Control of Microwave Qudits on Edge HardwareWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Flor Sanders, Gaurav Agarwal, Luca P. Carloni, Giuseppe Di Guglielmo, Andy C. Y. Li, Gabriel PerdueList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.03323Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.03323Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.03323Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416072034 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.03323 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.03323 |
| ids.openalex | https://openalex.org/W4416072034 |
| fwci | |
| type | preprint |
| title | Fast Machine Learning for Quantum Control of Microwave Qudits on Edge Hardware |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.03323 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.03323 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.03323 |
| locations[1].id | doi:10.48550/arxiv.2506.03323 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.03323 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032302941 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Flor Sanders |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sanders, Flor |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005056221 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gaurav Agarwal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Agarwal, Gaurav |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009992367 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5600-8931 |
| authorships[2].author.display_name | Luca P. Carloni |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carloni, Luca |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079644832 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5749-1432 |
| authorships[3].author.display_name | Giuseppe Di Guglielmo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Di Guglielmo, Giuseppe |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5023488255 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4542-3739 |
| authorships[4].author.display_name | Andy C. Y. Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Andy C. Y. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018107859 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6785-8720 |
| authorships[5].author.display_name | Gabriel Perdue |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Perdue, Gabriel N. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.03323 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Machine Learning for Quantum Control of Microwave Qudits on Edge Hardware |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:02:15.908279 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.03323 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.03323 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.03323 |
| primary_location.id | pmh:oai:arXiv.org:2506.03323 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.03323 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.03323 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 69 |
| abstract_inverted_index.It | 42 |
| abstract_inverted_index.ML | 119 |
| abstract_inverted_index.as | 66, 103 |
| abstract_inverted_index.be | 38 |
| abstract_inverted_index.in | 40, 92 |
| abstract_inverted_index.is | 3, 43, 64 |
| abstract_inverted_index.it | 15 |
| abstract_inverted_index.of | 11, 135, 152 |
| abstract_inverted_index.on | 17 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.to | 7, 20, 37, 45, 52, 80 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.CPU | 26 |
| abstract_inverted_index.Our | 130 |
| abstract_inverted_index.The | 110 |
| abstract_inverted_index.and | 54, 125, 149 |
| abstract_inverted_index.are | 34, 97 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.for | 84, 107, 127 |
| abstract_inverted_index.low | 50, 143 |
| abstract_inverted_index.the | 9, 22, 133, 136 |
| abstract_inverted_index.too | 35 |
| abstract_inverted_index.(ML) | 78 |
| abstract_inverted_index.best | 23 |
| abstract_inverted_index.data | 113 |
| abstract_inverted_index.gate | 144 |
| abstract_inverted_index.have | 31, 46 |
| abstract_inverted_index.high | 56 |
| abstract_inverted_index.long | 36 |
| abstract_inverted_index.near | 147 |
| abstract_inverted_index.that | 33, 101 |
| abstract_inverted_index.with | 48, 55, 68, 139 |
| abstract_inverted_index.Here, | 73 |
| abstract_inverted_index.Phase | 89 |
| abstract_inverted_index.gates | 91 |
| abstract_inverted_index.logic | 154 |
| abstract_inverted_index.model | 120 |
| abstract_inverted_index.often | 30 |
| abstract_inverted_index.serve | 102 |
| abstract_inverted_index.space | 123 |
| abstract_inverted_index.trace | 145 |
| abstract_inverted_index.units | 106 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.where | 62 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.(SNAP) | 90 |
| abstract_inverted_index.adjust | 58 |
| abstract_inverted_index.cavity | 94 |
| abstract_inverted_index.delays | 32, 51 |
| abstract_inverted_index.design | 122 |
| abstract_inverted_index.gates, | 13 |
| abstract_inverted_index.models | 79, 141 |
| abstract_inverted_index.relies | 16 |
| abstract_inverted_index.state. | 72 |
| abstract_inverted_index.target | 70 |
| abstract_inverted_index.Quantum | 0 |
| abstract_inverted_index.applied | 39 |
| abstract_inverted_index.complex | 18 |
| abstract_inverted_index.control | 2, 24 |
| abstract_inverted_index.defined | 65 |
| abstract_inverted_index.improve | 8 |
| abstract_inverted_index.machine | 76 |
| abstract_inverted_index.optimal | 1 |
| abstract_inverted_index.overlap | 67 |
| abstract_inverted_index.quantum | 12, 59, 71, 99, 108 |
| abstract_inverted_index.qudits, | 95 |
| abstract_inverted_index.quickly | 53 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.systems | 47, 100 |
| abstract_inverted_index.utilize | 75 |
| abstract_inverted_index.accuracy | 10 |
| abstract_inverted_index.approach | 6 |
| abstract_inverted_index.efficacy | 134 |
| abstract_inverted_index.fidelity | 57, 63 |
| abstract_inverted_index.hardware | 60, 128 |
| abstract_inverted_index.involves | 112 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.$10^{-3}$ | 148 |
| abstract_inverted_index.Arbitrary | 88 |
| abstract_inverted_index.GPU-based | 28 |
| abstract_inverted_index.Selective | 86 |
| abstract_inverted_index.achieving | 142 |
| abstract_inverted_index.approach, | 138 |
| abstract_inverted_index.classical | 116 |
| abstract_inverted_index.determine | 21, 81 |
| abstract_inverted_index.efficient | 150 |
| abstract_inverted_index.extremely | 49 |
| abstract_inverted_index.microwave | 93 |
| abstract_inverted_index.optimized | 140 |
| abstract_inverted_index.paramount | 44 |
| abstract_inverted_index.practice. | 41 |
| abstract_inverted_index.preparing | 85 |
| abstract_inverted_index.promising | 5 |
| abstract_inverted_index.settings, | 61 |
| abstract_inverted_index.settings. | 25 |
| abstract_inverted_index.algorithms | 19 |
| abstract_inverted_index.approaches | 29 |
| abstract_inverted_index.computing. | 109 |
| abstract_inverted_index.elementary | 104 |
| abstract_inverted_index.generation | 114 |
| abstract_inverted_index.infidelity | 146 |
| abstract_inverted_index.parameters | 83 |
| abstract_inverted_index.resources. | 155 |
| abstract_inverted_index.computation | 105 |
| abstract_inverted_index.demonstrate | 132 |
| abstract_inverted_index.methodology | 111 |
| abstract_inverted_index.multi-level | 98 |
| abstract_inverted_index.techniques, | 118 |
| abstract_inverted_index.utilization | 151 |
| abstract_inverted_index.development, | 121 |
| abstract_inverted_index.exploration, | 124 |
| abstract_inverted_index.optimization | 117 |
| abstract_inverted_index.programmable | 153 |
| abstract_inverted_index.quantization | 126 |
| abstract_inverted_index.control-pulse | 82 |
| abstract_inverted_index.implementation. | 129 |
| abstract_inverted_index.Number-dependent | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |