Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.11267
Matrix square roots and their inverses arise frequently in machine learning, e.g., when sampling from high-dimensional Gaussians $\mathcal{N}(\mathbf 0, \mathbf K)$ or whitening a vector $\mathbf b$ against covariance matrix $\mathbf K$. While existing methods typically require $O(N^3)$ computation, we introduce a highly-efficient quadratic-time algorithm for computing $\mathbf K^{1/2} \mathbf b$, $\mathbf K^{-1/2} \mathbf b$, and their derivatives through matrix-vector multiplication (MVMs). Our method combines Krylov subspace methods with a rational approximation and typically achieves $4$ decimal places of accuracy with fewer than $100$ MVMs. Moreover, the backward pass requires little additional computation. We demonstrate our method's applicability on matrices as large as $50,\!000 \times 50,\!000$ - well beyond traditional methods - with little approximation error. Applying this increased scalability to variational Gaussian processes, Bayesian optimization, and Gibbs sampling results in more powerful models with higher accuracy.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.11267
- https://arxiv.org/pdf/2006.11267
- OA Status
- green
- Cited By
- 11
- References
- 79
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036520005
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036520005Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.11267Digital Object Identifier
- Title
-
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-19Full publication date if available
- Authors
-
Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. GardnerList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.11267Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.11267Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.11267Direct OA link when available
- Concepts
-
Krylov subspace, Matrix (chemical analysis), Computation, Mathematics, Gaussian, Algorithm, Quadratic equation, Gibbs sampling, Sampling (signal processing), Applied mathematics, Covariance matrix, Square matrix, Multiplication (music), Bayesian probability, Eigenvalues and eigenvectors, Combinatorics, Computer science, Physics, Symmetric matrix, Quantum mechanics, Statistics, Iterative method, Materials science, Geometry, Filter (signal processing), Composite material, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 1, 2021: 5, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
79Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036520005 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.11267 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.11267 |
| ids.mag | 3036520005 |
| ids.openalex | https://openalex.org/W3036520005 |
| fwci | |
| type | preprint |
| title | Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T13126 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9840999841690063 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Scientific Research and Discoveries |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9793999791145325 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147060835 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6210151314735413 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1757151 |
| concepts[0].display_name | Krylov subspace |
| concepts[1].id | https://openalex.org/C106487976 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5599030256271362 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[1].display_name | Matrix (chemical analysis) |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5399532318115234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5388974547386169 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C163716315 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5366123914718628 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[4].display_name | Gaussian |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4975283443927765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C129844170 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4817764461040497 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q41299 |
| concepts[6].display_name | Quadratic equation |
| concepts[7].id | https://openalex.org/C158424031 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47217124700546265 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1191905 |
| concepts[7].display_name | Gibbs sampling |
| concepts[8].id | https://openalex.org/C140779682 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4335167407989502 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[8].display_name | Sampling (signal processing) |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.43285197019577026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C185142706 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42696431279182434 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[10].display_name | Covariance matrix |
| concepts[11].id | https://openalex.org/C69044650 |
| concepts[11].level | 4 |
| concepts[11].score | 0.42384597659111023 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2739329 |
| concepts[11].display_name | Square matrix |
| concepts[12].id | https://openalex.org/C2780595030 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4197652339935303 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3860309 |
| concepts[12].display_name | Multiplication (music) |
| concepts[13].id | https://openalex.org/C107673813 |
| concepts[13].level | 2 |
| concepts[13].score | 0.38514089584350586 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[13].display_name | Bayesian probability |
| concepts[14].id | https://openalex.org/C158693339 |
| concepts[14].level | 2 |
| concepts[14].score | 0.34792494773864746 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[14].display_name | Eigenvalues and eigenvectors |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3389509916305542 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.2878151535987854 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.23863354325294495 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C54848796 |
| concepts[18].level | 3 |
| concepts[18].score | 0.16564780473709106 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q339011 |
| concepts[18].display_name | Symmetric matrix |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.12162196636199951 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.08887353539466858 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C159694833 |
| concepts[21].level | 2 |
| concepts[21].score | 0.07345148921012878 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2321565 |
| concepts[21].display_name | Iterative method |
| concepts[22].id | https://openalex.org/C192562407 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[22].display_name | Materials science |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| concepts[24].id | https://openalex.org/C106131492 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[24].display_name | Filter (signal processing) |
| concepts[25].id | https://openalex.org/C159985019 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[25].display_name | Composite material |
| concepts[26].id | https://openalex.org/C31972630 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[26].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/krylov-subspace |
| keywords[0].score | 0.6210151314735413 |
| keywords[0].display_name | Krylov subspace |
| keywords[1].id | https://openalex.org/keywords/matrix |
| keywords[1].score | 0.5599030256271362 |
| keywords[1].display_name | Matrix (chemical analysis) |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.5399532318115234 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5388974547386169 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/gaussian |
| keywords[4].score | 0.5366123914718628 |
| keywords[4].display_name | Gaussian |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4975283443927765 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/quadratic-equation |
| keywords[6].score | 0.4817764461040497 |
| keywords[6].display_name | Quadratic equation |
| keywords[7].id | https://openalex.org/keywords/gibbs-sampling |
| keywords[7].score | 0.47217124700546265 |
| keywords[7].display_name | Gibbs sampling |
| keywords[8].id | https://openalex.org/keywords/sampling |
| keywords[8].score | 0.4335167407989502 |
| keywords[8].display_name | Sampling (signal processing) |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.43285197019577026 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/covariance-matrix |
| keywords[10].score | 0.42696431279182434 |
| keywords[10].display_name | Covariance matrix |
| keywords[11].id | https://openalex.org/keywords/square-matrix |
| keywords[11].score | 0.42384597659111023 |
| keywords[11].display_name | Square matrix |
| keywords[12].id | https://openalex.org/keywords/multiplication |
| keywords[12].score | 0.4197652339935303 |
| keywords[12].display_name | Multiplication (music) |
| keywords[13].id | https://openalex.org/keywords/bayesian-probability |
| keywords[13].score | 0.38514089584350586 |
| keywords[13].display_name | Bayesian probability |
| keywords[14].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[14].score | 0.34792494773864746 |
| keywords[14].display_name | Eigenvalues and eigenvectors |
| keywords[15].id | https://openalex.org/keywords/combinatorics |
| keywords[15].score | 0.3389509916305542 |
| keywords[15].display_name | Combinatorics |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.2878151535987854 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.23863354325294495 |
| keywords[17].display_name | Physics |
| keywords[18].id | https://openalex.org/keywords/symmetric-matrix |
| keywords[18].score | 0.16564780473709106 |
| keywords[18].display_name | Symmetric matrix |
| keywords[19].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[19].score | 0.12162196636199951 |
| keywords[19].display_name | Quantum mechanics |
| keywords[20].id | https://openalex.org/keywords/statistics |
| keywords[20].score | 0.08887353539466858 |
| keywords[20].display_name | Statistics |
| keywords[21].id | https://openalex.org/keywords/iterative-method |
| keywords[21].score | 0.07345148921012878 |
| keywords[21].display_name | Iterative method |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.11267 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.11267 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.11267 |
| locations[1].id | doi:10.48550/arxiv.2006.11267 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.11267 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065203625 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Geoff Pleiss |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[0].affiliations[0].raw_affiliation_string | Columbia University |
| authorships[0].institutions[0].id | https://openalex.org/I78577930 |
| authorships[0].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Columbia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Geoff Pleiss |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Columbia University |
| authorships[1].author.id | https://openalex.org/A5054350362 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1724-0436 |
| authorships[1].author.display_name | Martin Jankowiak |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[1].affiliations[0].raw_affiliation_string | Broad Inst |
| authorships[1].institutions[0].id | https://openalex.org/I107606265 |
| authorships[1].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Broad Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Martin Jankowiak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Broad Inst |
| authorships[2].author.id | https://openalex.org/A5042358015 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3143-0922 |
| authorships[2].author.display_name | David Eriksson |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[2].affiliations[0].raw_affiliation_string | |
| authorships[2].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[2].institutions[0].ror | https://ror.org/02388em19 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Meta (Israel) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David Eriksson |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | |
| authorships[3].author.id | https://openalex.org/A5015625725 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1711-128X |
| authorships[3].author.display_name | Anil Damle |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[3].affiliations[0].raw_affiliation_string | cornell University |
| authorships[3].institutions[0].id | https://openalex.org/I205783295 |
| authorships[3].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Cornell University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anil Damle |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | cornell University |
| authorships[4].author.id | https://openalex.org/A5072585411 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1897-8384 |
| authorships[4].author.display_name | Jacob R. Gardner |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[4].affiliations[0].raw_affiliation_string | #N# * University of Pennsylvania. |
| authorships[4].institutions[0].id | https://openalex.org/I79576946 |
| authorships[4].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Pennsylvania |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jacob R. Gardner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | #N# * University of Pennsylvania. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.11267 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-06-25T00:00:00 |
| display_name | Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W3161880765, https://openalex.org/W1537831955, https://openalex.org/W2942315554, https://openalex.org/W2106635645, https://openalex.org/W3134028852, https://openalex.org/W2153179908, https://openalex.org/W2137297956, https://openalex.org/W2764492849, https://openalex.org/W2350804638, https://openalex.org/W2124438828 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.11267 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.11267 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.11267 |
| primary_location.id | pmh:oai:arXiv.org:2006.11267 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.11267 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.11267 |
| publication_date | 2020-06-19 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2002349910, https://openalex.org/W2799181865, https://openalex.org/W2095654324, https://openalex.org/W2084813411, https://openalex.org/W2963395419, https://openalex.org/W2798909945, https://openalex.org/W2125849100, https://openalex.org/W2963439757, https://openalex.org/W2010916347, https://openalex.org/W2187187251, https://openalex.org/W1702387805, https://openalex.org/W2018850201, https://openalex.org/W1576347883, https://openalex.org/W38816153, https://openalex.org/W3020430839, https://openalex.org/W3034299904, https://openalex.org/W1506342804, https://openalex.org/W2963190151, https://openalex.org/W2170952786, https://openalex.org/W2062943478, https://openalex.org/W1590534028, https://openalex.org/W2550412943, https://openalex.org/W2130761473, https://openalex.org/W2138249740, https://openalex.org/W2963808450, https://openalex.org/W2010196418, https://openalex.org/W2167789032, https://openalex.org/W2149375696, https://openalex.org/W2049766166, https://openalex.org/W2044890344, https://openalex.org/W2015539995, https://openalex.org/W2969999645, https://openalex.org/W1905898145, https://openalex.org/W1560263223, https://openalex.org/W1777124189, https://openalex.org/W2287294391, https://openalex.org/W2012778686, https://openalex.org/W2014168697, https://openalex.org/W2971353969, https://openalex.org/W2016200888, https://openalex.org/W1989730355, https://openalex.org/W2117686912, https://openalex.org/W1481900670, https://openalex.org/W1483804921, https://openalex.org/W2025139978, https://openalex.org/W3120740533, https://openalex.org/W2015627422, https://openalex.org/W2526826214, https://openalex.org/W48628141, https://openalex.org/W2964121744, https://openalex.org/W2155927283, https://openalex.org/W2963745808, https://openalex.org/W2098841537, https://openalex.org/W2764280570, https://openalex.org/W2284872233, https://openalex.org/W2144902422, https://openalex.org/W2884453666, https://openalex.org/W1979921936, https://openalex.org/W2131241448, https://openalex.org/W2039522160, https://openalex.org/W2014624740, https://openalex.org/W2611252285, https://openalex.org/W2962996090, https://openalex.org/W2963798377, https://openalex.org/W2035545285, https://openalex.org/W2593660867, https://openalex.org/W2890055393, https://openalex.org/W1969067534, https://openalex.org/W1978219552, https://openalex.org/W2950256799, https://openalex.org/W1997321933, https://openalex.org/W2166851633, https://openalex.org/W1966079442, https://openalex.org/W2168464387, https://openalex.org/W1996160600, https://openalex.org/W2138806252, https://openalex.org/W192616667, https://openalex.org/W2166414779, https://openalex.org/W1533660737 |
| referenced_works_count | 79 |
| abstract_inverted_index.- | 106, 111 |
| abstract_inverted_index.a | 23, 41, 69 |
| abstract_inverted_index.0, | 18 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.as | 100, 102 |
| abstract_inverted_index.b$ | 26 |
| abstract_inverted_index.in | 8, 130 |
| abstract_inverted_index.of | 78 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 120 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.$4$ | 75 |
| abstract_inverted_index.K$. | 31 |
| abstract_inverted_index.K)$ | 20 |
| abstract_inverted_index.Our | 62 |
| abstract_inverted_index.and | 3, 55, 72, 126 |
| abstract_inverted_index.b$, | 50, 54 |
| abstract_inverted_index.for | 45 |
| abstract_inverted_index.our | 95 |
| abstract_inverted_index.the | 86 |
| abstract_inverted_index.from | 14 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.pass | 88 |
| abstract_inverted_index.than | 82 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.well | 107 |
| abstract_inverted_index.when | 12 |
| abstract_inverted_index.with | 68, 80, 112, 134 |
| abstract_inverted_index.$100$ | 83 |
| abstract_inverted_index.Gibbs | 127 |
| abstract_inverted_index.MVMs. | 84 |
| abstract_inverted_index.While | 32 |
| abstract_inverted_index.arise | 6 |
| abstract_inverted_index.e.g., | 11 |
| abstract_inverted_index.fewer | 81 |
| abstract_inverted_index.large | 101 |
| abstract_inverted_index.roots | 2 |
| abstract_inverted_index.their | 4, 56 |
| abstract_inverted_index.Krylov | 65 |
| abstract_inverted_index.Matrix | 0 |
| abstract_inverted_index.\times | 104 |
| abstract_inverted_index.beyond | 108 |
| abstract_inverted_index.error. | 115 |
| abstract_inverted_index.higher | 135 |
| abstract_inverted_index.little | 90, 113 |
| abstract_inverted_index.matrix | 29 |
| abstract_inverted_index.method | 63 |
| abstract_inverted_index.models | 133 |
| abstract_inverted_index.places | 77 |
| abstract_inverted_index.square | 1 |
| abstract_inverted_index.vector | 24 |
| abstract_inverted_index.(MVMs). | 61 |
| abstract_inverted_index.K^{1/2} | 48 |
| abstract_inverted_index.\mathbf | 19, 49, 53 |
| abstract_inverted_index.against | 27 |
| abstract_inverted_index.decimal | 76 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.methods | 34, 67, 110 |
| abstract_inverted_index.require | 36 |
| abstract_inverted_index.results | 129 |
| abstract_inverted_index.through | 58 |
| abstract_inverted_index.$O(N^3)$ | 37 |
| abstract_inverted_index.$\mathbf | 25, 30, 47, 51 |
| abstract_inverted_index.Applying | 116 |
| abstract_inverted_index.Bayesian | 124 |
| abstract_inverted_index.Gaussian | 122 |
| abstract_inverted_index.K^{-1/2} | 52 |
| abstract_inverted_index.accuracy | 79 |
| abstract_inverted_index.achieves | 74 |
| abstract_inverted_index.backward | 87 |
| abstract_inverted_index.combines | 64 |
| abstract_inverted_index.existing | 33 |
| abstract_inverted_index.inverses | 5 |
| abstract_inverted_index.matrices | 99 |
| abstract_inverted_index.method's | 96 |
| abstract_inverted_index.powerful | 132 |
| abstract_inverted_index.rational | 70 |
| abstract_inverted_index.requires | 89 |
| abstract_inverted_index.sampling | 13, 128 |
| abstract_inverted_index.subspace | 66 |
| abstract_inverted_index.$50,\!000 | 103 |
| abstract_inverted_index.50,\!000$ | 105 |
| abstract_inverted_index.Gaussians | 16 |
| abstract_inverted_index.Moreover, | 85 |
| abstract_inverted_index.accuracy. | 136 |
| abstract_inverted_index.algorithm | 44 |
| abstract_inverted_index.computing | 46 |
| abstract_inverted_index.increased | 118 |
| abstract_inverted_index.introduce | 40 |
| abstract_inverted_index.learning, | 10 |
| abstract_inverted_index.typically | 35, 73 |
| abstract_inverted_index.whitening | 22 |
| abstract_inverted_index.additional | 91 |
| abstract_inverted_index.covariance | 28 |
| abstract_inverted_index.frequently | 7 |
| abstract_inverted_index.processes, | 123 |
| abstract_inverted_index.demonstrate | 94 |
| abstract_inverted_index.derivatives | 57 |
| abstract_inverted_index.scalability | 119 |
| abstract_inverted_index.traditional | 109 |
| abstract_inverted_index.variational | 121 |
| abstract_inverted_index.computation, | 38 |
| abstract_inverted_index.computation. | 92 |
| abstract_inverted_index.applicability | 97 |
| abstract_inverted_index.approximation | 71, 114 |
| abstract_inverted_index.matrix-vector | 59 |
| abstract_inverted_index.optimization, | 125 |
| abstract_inverted_index.multiplication | 60 |
| abstract_inverted_index.quadratic-time | 43 |
| abstract_inverted_index.high-dimensional | 15 |
| abstract_inverted_index.highly-efficient | 42 |
| abstract_inverted_index.$\mathcal{N}(\mathbf | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |