Fast Multivariate Multipoint Evaluation Over All Finite Fields Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.00342
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field $\mathbb{F}$ that outputs the evaluations of an $m$-variate polynomial of degree less than $d$ in each variable at $N$ points in time \[ (d^m+N)^{1+o(1)}\cdot\poly(m,d,\log|\mathbb{F}|) \] for all $m\in\N$ and all sufficiently large $d\in\mathbb{N}$. A previous work of Kedlaya and Umans (FOCS 2008, SICOMP 2011) achieved the same time complexity when the number of variables $m$ is at most $d^{o(1)}$ and had left the problem of removing this condition as an open problem. A recent work of Bhargava, Ghosh, Kumar and Mohapatra (STOC 2022) answered this question when the underlying field is not \emph{too} large and has characteristic less than $d^{o(1)}$. In this work, we remove this constraint on the number of variables over all finite fields, thereby answering the question of Kedlaya and Umans over all finite fields. Our algorithm relies on a non-trivial combination of ideas from three seemingly different previously known algorithms for multivariate multipoint evaluation, namely the algorithms of Kedlaya and Umans, that of Björklund, Kaski and Williams (IPEC 2017, Algorithmica 2019), and that of Bhargava, Ghosh, Kumar and Mohapatra, together with a result of Bombieri and Vinogradov from analytic number theory about the distribution of primes in an arithmetic progression. We also present a second algorithm for multivariate multipoint evaluation that is completely elementary and in particular, avoids the use of the Bombieri--Vinogradov Theorem. However, it requires a mild assumption that the field size is bounded by an exponential-tower in $d$ of bounded \textit{height}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.00342
- https://arxiv.org/pdf/2205.00342
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225401169
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225401169Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.00342Digital Object Identifier
- Title
-
Fast Multivariate Multipoint Evaluation Over All Finite FieldsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-30Full publication date if available
- Authors
-
Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, Chris UmansList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.00342Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.00342Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.00342Direct OA link when available
- Concepts
-
Finite field, Mathematics, Multivariate statistics, Polynomial, Discrete mathematics, Field (mathematics), Combinatorics, Degree (music), Random variate, Constraint (computer-aided design), Random variable, Statistics, Pure mathematics, Physics, Mathematical analysis, Geometry, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225401169 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.00342 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.00342 |
| ids.openalex | https://openalex.org/W4225401169 |
| fwci | |
| type | preprint |
| title | Fast Multivariate Multipoint Evaluation Over All Finite Fields |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11693 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cryptography and Residue Arithmetic |
| topics[1].id | https://openalex.org/T11435 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Polynomial and algebraic computation |
| topics[2].id | https://openalex.org/T11697 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Numerical Methods and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C77926391 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7939693927764893 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q603880 |
| concepts[0].display_name | Finite field |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6727370619773865 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C161584116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.619076669216156 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[2].display_name | Multivariate statistics |
| concepts[3].id | https://openalex.org/C90119067 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6099328398704529 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[3].display_name | Polynomial |
| concepts[4].id | https://openalex.org/C118615104 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5287066698074341 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[4].display_name | Discrete mathematics |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48502010107040405 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4776374399662018 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C2775997480 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4482566714286804 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q586277 |
| concepts[7].display_name | Degree (music) |
| concepts[8].id | https://openalex.org/C141547133 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43769535422325134 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7291996 |
| concepts[8].display_name | Random variate |
| concepts[9].id | https://openalex.org/C2776036281 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42217355966567993 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[9].display_name | Constraint (computer-aided design) |
| concepts[10].id | https://openalex.org/C122123141 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2599835991859436 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[10].display_name | Random variable |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17991816997528076 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1715119481086731 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13771483302116394 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10887303948402405 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07065567374229431 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C24890656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[16].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/finite-field |
| keywords[0].score | 0.7939693927764893 |
| keywords[0].display_name | Finite field |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6727370619773865 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[2].score | 0.619076669216156 |
| keywords[2].display_name | Multivariate statistics |
| keywords[3].id | https://openalex.org/keywords/polynomial |
| keywords[3].score | 0.6099328398704529 |
| keywords[3].display_name | Polynomial |
| keywords[4].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[4].score | 0.5287066698074341 |
| keywords[4].display_name | Discrete mathematics |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.48502010107040405 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.4776374399662018 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/degree |
| keywords[7].score | 0.4482566714286804 |
| keywords[7].display_name | Degree (music) |
| keywords[8].id | https://openalex.org/keywords/random-variate |
| keywords[8].score | 0.43769535422325134 |
| keywords[8].display_name | Random variate |
| keywords[9].id | https://openalex.org/keywords/constraint |
| keywords[9].score | 0.42217355966567993 |
| keywords[9].display_name | Constraint (computer-aided design) |
| keywords[10].id | https://openalex.org/keywords/random-variable |
| keywords[10].score | 0.2599835991859436 |
| keywords[10].display_name | Random variable |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.17991816997528076 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/pure-mathematics |
| keywords[12].score | 0.1715119481086731 |
| keywords[12].display_name | Pure mathematics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.13771483302116394 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.10887303948402405 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.07065567374229431 |
| keywords[15].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.00342 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.00342 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.00342 |
| locations[1].id | doi:10.48550/arxiv.2205.00342 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.00342 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072953772 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-7869-377X |
| authorships[0].author.display_name | Vishwas Bhargava |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhargava, Vishwas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101653312 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-4892-4210 |
| authorships[1].author.display_name | Sumanta Ghosh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ghosh, Sumanta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004777401 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7893-4346 |
| authorships[2].author.display_name | Zeyu Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Zeyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100713973 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6430-0219 |
| authorships[3].author.display_name | Mrinal Kumar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kumar, Mrinal |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5047283705 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6390-9401 |
| authorships[4].author.display_name | Chris Umans |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Umans, Chris |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.00342 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Multivariate Multipoint Evaluation Over All Finite Fields |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11693 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cryptography and Residue Arithmetic |
| related_works | https://openalex.org/W4254888883, https://openalex.org/W2784077364, https://openalex.org/W4243513811, https://openalex.org/W2052257784, https://openalex.org/W2035262292, https://openalex.org/W2406638334, https://openalex.org/W1968059772, https://openalex.org/W2087436276, https://openalex.org/W4313169514, https://openalex.org/W102511303 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.00342 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.00342 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.00342 |
| primary_location.id | pmh:oai:arXiv.org:2205.00342 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.00342 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.00342 |
| publication_date | 2022-04-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 73, 112 |
| abstract_inverted_index.a | 8, 13, 29, 172, 215, 237, 261 |
| abstract_inverted_index.In | 21, 140 |
| abstract_inverted_index.We | 234 |
| abstract_inverted_index.\[ | 62 |
| abstract_inverted_index.\] | 64 |
| abstract_inverted_index.an | 46, 109, 231, 271 |
| abstract_inverted_index.as | 12, 108 |
| abstract_inverted_index.at | 17, 57, 96 |
| abstract_inverted_index.by | 270 |
| abstract_inverted_index.in | 54, 60, 230, 249, 273 |
| abstract_inverted_index.is | 3, 95, 130, 245, 268 |
| abstract_inverted_index.it | 259 |
| abstract_inverted_index.of | 6, 45, 49, 76, 92, 104, 115, 150, 160, 175, 191, 196, 207, 217, 228, 254, 275 |
| abstract_inverted_index.on | 147, 171 |
| abstract_inverted_index.we | 24, 143 |
| abstract_inverted_index.$N$ | 58 |
| abstract_inverted_index.$d$ | 53, 274 |
| abstract_inverted_index.$m$ | 94 |
| abstract_inverted_index.Our | 168 |
| abstract_inverted_index.all | 66, 69, 153, 165 |
| abstract_inverted_index.and | 68, 78, 99, 119, 134, 162, 193, 199, 205, 211, 219, 248 |
| abstract_inverted_index.any | 37 |
| abstract_inverted_index.for | 32, 65, 184, 240 |
| abstract_inverted_index.had | 100 |
| abstract_inverted_index.has | 135 |
| abstract_inverted_index.not | 131 |
| abstract_inverted_index.the | 4, 43, 85, 90, 102, 127, 148, 158, 189, 226, 252, 255, 265 |
| abstract_inverted_index.use | 253 |
| abstract_inverted_index.also | 235 |
| abstract_inverted_index.each | 55 |
| abstract_inverted_index.from | 177, 221 |
| abstract_inverted_index.left | 101 |
| abstract_inverted_index.less | 51, 137 |
| abstract_inverted_index.mild | 262 |
| abstract_inverted_index.most | 97 |
| abstract_inverted_index.open | 110 |
| abstract_inverted_index.over | 36, 152, 164 |
| abstract_inverted_index.same | 86 |
| abstract_inverted_index.show | 25 |
| abstract_inverted_index.size | 267 |
| abstract_inverted_index.than | 52, 138 |
| abstract_inverted_index.that | 26, 41, 195, 206, 244, 264 |
| abstract_inverted_index.this | 22, 106, 124, 141, 145 |
| abstract_inverted_index.time | 61, 87 |
| abstract_inverted_index.when | 89, 126 |
| abstract_inverted_index.with | 214 |
| abstract_inverted_index.work | 75, 114 |
| abstract_inverted_index.(FOCS | 80 |
| abstract_inverted_index.(IPEC | 201 |
| abstract_inverted_index.(STOC | 121 |
| abstract_inverted_index.2008, | 81 |
| abstract_inverted_index.2011) | 83 |
| abstract_inverted_index.2017, | 202 |
| abstract_inverted_index.2022) | 122 |
| abstract_inverted_index.Kaski | 198 |
| abstract_inverted_index.Kumar | 118, 210 |
| abstract_inverted_index.Umans | 79, 163 |
| abstract_inverted_index.about | 225 |
| abstract_inverted_index.field | 39, 129, 266 |
| abstract_inverted_index.given | 11 |
| abstract_inverted_index.ideas | 176 |
| abstract_inverted_index.known | 182 |
| abstract_inverted_index.large | 71, 133 |
| abstract_inverted_index.there | 27 |
| abstract_inverted_index.three | 178 |
| abstract_inverted_index.work, | 23, 142 |
| abstract_inverted_index.2019), | 204 |
| abstract_inverted_index.Ghosh, | 117, 209 |
| abstract_inverted_index.SICOMP | 82 |
| abstract_inverted_index.Umans, | 194 |
| abstract_inverted_index.avoids | 251 |
| abstract_inverted_index.degree | 50 |
| abstract_inverted_index.exists | 28 |
| abstract_inverted_index.finite | 38, 154, 166 |
| abstract_inverted_index.namely | 188 |
| abstract_inverted_index.number | 91, 149, 223 |
| abstract_inverted_index.points | 59 |
| abstract_inverted_index.primes | 229 |
| abstract_inverted_index.recent | 113 |
| abstract_inverted_index.relies | 170 |
| abstract_inverted_index.remove | 144 |
| abstract_inverted_index.result | 216 |
| abstract_inverted_index.second | 238 |
| abstract_inverted_index.theory | 224 |
| abstract_inverted_index.Kedlaya | 77, 161, 192 |
| abstract_inverted_index.bounded | 269, 276 |
| abstract_inverted_index.fields, | 155 |
| abstract_inverted_index.fields. | 167 |
| abstract_inverted_index.outputs | 42 |
| abstract_inverted_index.points. | 20 |
| abstract_inverted_index.present | 236 |
| abstract_inverted_index.problem | 5, 103 |
| abstract_inverted_index.thereby | 156 |
| abstract_inverted_index.vector, | 15 |
| abstract_inverted_index.$m\in\N$ | 67 |
| abstract_inverted_index.Bombieri | 218 |
| abstract_inverted_index.However, | 258 |
| abstract_inverted_index.Theorem. | 257 |
| abstract_inverted_index.Williams | 200 |
| abstract_inverted_index.achieved | 84 |
| abstract_inverted_index.analytic | 222 |
| abstract_inverted_index.answered | 123 |
| abstract_inverted_index.multiple | 18 |
| abstract_inverted_index.previous | 74 |
| abstract_inverted_index.problem. | 111 |
| abstract_inverted_index.question | 125, 159 |
| abstract_inverted_index.removing | 105 |
| abstract_inverted_index.requires | 260 |
| abstract_inverted_index.together | 213 |
| abstract_inverted_index.variable | 56 |
| abstract_inverted_index.Bhargava, | 116, 208 |
| abstract_inverted_index.Mohapatra | 120 |
| abstract_inverted_index.algorithm | 31, 169, 239 |
| abstract_inverted_index.answering | 157 |
| abstract_inverted_index.condition | 107 |
| abstract_inverted_index.different | 180 |
| abstract_inverted_index.seemingly | 179 |
| abstract_inverted_index.variables | 93, 151 |
| abstract_inverted_index.$d^{o(1)}$ | 98 |
| abstract_inverted_index.Mohapatra, | 212 |
| abstract_inverted_index.Vinogradov | 220 |
| abstract_inverted_index.\emph{too} | 132 |
| abstract_inverted_index.algorithms | 183, 190 |
| abstract_inverted_index.arithmetic | 232 |
| abstract_inverted_index.assumption | 263 |
| abstract_inverted_index.completely | 246 |
| abstract_inverted_index.complexity | 88 |
| abstract_inverted_index.constraint | 146 |
| abstract_inverted_index.elementary | 247 |
| abstract_inverted_index.evaluating | 7 |
| abstract_inverted_index.evaluation | 2, 19, 35, 243 |
| abstract_inverted_index.multipoint | 1, 34, 186, 242 |
| abstract_inverted_index.polynomial | 48 |
| abstract_inverted_index.previously | 181 |
| abstract_inverted_index.underlying | 128 |
| abstract_inverted_index.$d^{o(1)}$. | 139 |
| abstract_inverted_index.$m$-variate | 47 |
| abstract_inverted_index.Björklund, | 197 |
| abstract_inverted_index.coefficient | 14 |
| abstract_inverted_index.combination | 174 |
| abstract_inverted_index.evaluation, | 187 |
| abstract_inverted_index.evaluations | 44 |
| abstract_inverted_index.non-trivial | 173 |
| abstract_inverted_index.particular, | 250 |
| abstract_inverted_index.polynomial, | 10 |
| abstract_inverted_index.$\mathbb{F}$ | 40 |
| abstract_inverted_index.Algorithmica | 203 |
| abstract_inverted_index.Multivariate | 0 |
| abstract_inverted_index.distribution | 227 |
| abstract_inverted_index.multivariate | 9, 33, 185, 241 |
| abstract_inverted_index.progression. | 233 |
| abstract_inverted_index.sufficiently | 70 |
| abstract_inverted_index.deterministic | 30 |
| abstract_inverted_index.characteristic | 136 |
| abstract_inverted_index.simultaneously | 16 |
| abstract_inverted_index.\textit{height}. | 277 |
| abstract_inverted_index.$d\in\mathbb{N}$. | 72 |
| abstract_inverted_index.exponential-tower | 272 |
| abstract_inverted_index.Bombieri--Vinogradov | 256 |
| abstract_inverted_index.(d^m+N)^{1+o(1)}\cdot\poly(m,d,\log|\mathbb{F}|) | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |