Fast optimization of common basis for matrix set through Common Singular Value Decomposition Article Swipe
SVD (singular value decomposition) is one of the basic tools of machine learning, allowing to optimize basis for a given matrix. However, sometimes we have a set of matrices $\{A_k\}_k$ instead, and would like to optimize a single common basis for them: find orthogonal matrices $U$, $V$, such that $\{U^T A_k V\}$ set of matrices is somehow simpler. For example DCT-II is orthonormal basis of functions commonly used in image/video compression - as discussed here, this kind of basis can be quickly automatically optimized for a given dataset. While also discussed gradient descent optimization might be computationally costly, there is proposed CSVD (common SVD): fast general approach based on SVD. Specifically, we choose $U$ as built of eigenvectors of $\sum_i (w_k)^q (A_k A_k^T)^p$ and $V$ of $\sum_k (w_k)^q (A_k^T A_k)^p$, where $w_k$ are their weights, $p,q>0$ are some chosen powers e.g. 1/2, optionally with normalization e.g. $A \to A - rc^T$ where $r_i=\sum_j A_{ij}, c_j =\sum_i A_{ij}$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.08242
- https://arxiv.org/pdf/2204.08242
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224253531
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224253531Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.08242Digital Object Identifier
- Title
-
Fast optimization of common basis for matrix set through Common Singular Value DecompositionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-18Full publication date if available
- Authors
-
Jarek DudaList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.08242Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.08242Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.08242Direct OA link when available
- Concepts
-
Singular value decomposition, Orthonormal basis, Basis (linear algebra), Eigenvalues and eigenvectors, Normalization (sociology), Combinatorics, Orthogonal matrix, Mathematics, Matrix (chemical analysis), Singular value, Set (abstract data type), Gradient descent, Algorithm, Basis function, Value (mathematics), Orthogonal basis, Discrete mathematics, Computer science, Mathematical analysis, Artificial intelligence, Geometry, Physics, Statistics, Artificial neural network, Sociology, Materials science, Quantum mechanics, Composite material, Programming language, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224253531 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.08242 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.08242 |
| ids.openalex | https://openalex.org/W4224253531 |
| fwci | |
| type | preprint |
| title | Fast optimization of common basis for matrix set through Common Singular Value Decomposition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10792 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9810000061988831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Matrix Theory and Algorithms |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9757000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22789450 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8761345744132996 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q420904 |
| concepts[0].display_name | Singular value decomposition |
| concepts[1].id | https://openalex.org/C5806529 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8252406716346741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2365325 |
| concepts[1].display_name | Orthonormal basis |
| concepts[2].id | https://openalex.org/C12426560 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6914509534835815 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[2].display_name | Basis (linear algebra) |
| concepts[3].id | https://openalex.org/C158693339 |
| concepts[3].level | 2 |
| concepts[3].score | 0.590858519077301 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[3].display_name | Eigenvalues and eigenvectors |
| concepts[4].id | https://openalex.org/C136886441 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5884981751441956 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[4].display_name | Normalization (sociology) |
| concepts[5].id | https://openalex.org/C114614502 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5768564939498901 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[5].display_name | Combinatorics |
| concepts[6].id | https://openalex.org/C44292817 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5711654424667358 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q333871 |
| concepts[6].display_name | Orthogonal matrix |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5643104314804077 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C106487976 |
| concepts[8].level | 2 |
| concepts[8].score | 0.558181881904602 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[8].display_name | Matrix (chemical analysis) |
| concepts[9].id | https://openalex.org/C109282560 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5578055381774902 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4166054 |
| concepts[9].display_name | Singular value |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.472986102104187 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| concepts[11].id | https://openalex.org/C153258448 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4644152522087097 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[11].display_name | Gradient descent |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.43594539165496826 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C5917680 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4326667785644531 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2621825 |
| concepts[13].display_name | Basis function |
| concepts[14].id | https://openalex.org/C2776291640 |
| concepts[14].level | 2 |
| concepts[14].score | 0.41120508313179016 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[14].display_name | Value (mathematics) |
| concepts[15].id | https://openalex.org/C187064257 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3565766215324402 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3306808 |
| concepts[15].display_name | Orthogonal basis |
| concepts[16].id | https://openalex.org/C118615104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3437557518482208 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[16].display_name | Discrete mathematics |
| concepts[17].id | https://openalex.org/C41008148 |
| concepts[17].level | 0 |
| concepts[17].score | 0.2744842767715454 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[17].display_name | Computer science |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1696254312992096 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C154945302 |
| concepts[19].level | 1 |
| concepts[19].score | 0.15392819046974182 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[19].display_name | Artificial intelligence |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.11877483129501343 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.11868640780448914 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C105795698 |
| concepts[22].level | 1 |
| concepts[22].score | 0.07160630822181702 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[22].display_name | Statistics |
| concepts[23].id | https://openalex.org/C50644808 |
| concepts[23].level | 2 |
| concepts[23].score | 0.06639418005943298 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[23].display_name | Artificial neural network |
| concepts[24].id | https://openalex.org/C144024400 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[24].display_name | Sociology |
| concepts[25].id | https://openalex.org/C192562407 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[25].display_name | Materials science |
| concepts[26].id | https://openalex.org/C62520636 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[26].display_name | Quantum mechanics |
| concepts[27].id | https://openalex.org/C159985019 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[27].display_name | Composite material |
| concepts[28].id | https://openalex.org/C199360897 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[28].display_name | Programming language |
| concepts[29].id | https://openalex.org/C19165224 |
| concepts[29].level | 1 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[29].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/singular-value-decomposition |
| keywords[0].score | 0.8761345744132996 |
| keywords[0].display_name | Singular value decomposition |
| keywords[1].id | https://openalex.org/keywords/orthonormal-basis |
| keywords[1].score | 0.8252406716346741 |
| keywords[1].display_name | Orthonormal basis |
| keywords[2].id | https://openalex.org/keywords/basis |
| keywords[2].score | 0.6914509534835815 |
| keywords[2].display_name | Basis (linear algebra) |
| keywords[3].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[3].score | 0.590858519077301 |
| keywords[3].display_name | Eigenvalues and eigenvectors |
| keywords[4].id | https://openalex.org/keywords/normalization |
| keywords[4].score | 0.5884981751441956 |
| keywords[4].display_name | Normalization (sociology) |
| keywords[5].id | https://openalex.org/keywords/combinatorics |
| keywords[5].score | 0.5768564939498901 |
| keywords[5].display_name | Combinatorics |
| keywords[6].id | https://openalex.org/keywords/orthogonal-matrix |
| keywords[6].score | 0.5711654424667358 |
| keywords[6].display_name | Orthogonal matrix |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.5643104314804077 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/matrix |
| keywords[8].score | 0.558181881904602 |
| keywords[8].display_name | Matrix (chemical analysis) |
| keywords[9].id | https://openalex.org/keywords/singular-value |
| keywords[9].score | 0.5578055381774902 |
| keywords[9].display_name | Singular value |
| keywords[10].id | https://openalex.org/keywords/set |
| keywords[10].score | 0.472986102104187 |
| keywords[10].display_name | Set (abstract data type) |
| keywords[11].id | https://openalex.org/keywords/gradient-descent |
| keywords[11].score | 0.4644152522087097 |
| keywords[11].display_name | Gradient descent |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.43594539165496826 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/basis-function |
| keywords[13].score | 0.4326667785644531 |
| keywords[13].display_name | Basis function |
| keywords[14].id | https://openalex.org/keywords/value |
| keywords[14].score | 0.41120508313179016 |
| keywords[14].display_name | Value (mathematics) |
| keywords[15].id | https://openalex.org/keywords/orthogonal-basis |
| keywords[15].score | 0.3565766215324402 |
| keywords[15].display_name | Orthogonal basis |
| keywords[16].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[16].score | 0.3437557518482208 |
| keywords[16].display_name | Discrete mathematics |
| keywords[17].id | https://openalex.org/keywords/computer-science |
| keywords[17].score | 0.2744842767715454 |
| keywords[17].display_name | Computer science |
| keywords[18].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[18].score | 0.1696254312992096 |
| keywords[18].display_name | Mathematical analysis |
| keywords[19].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[19].score | 0.15392819046974182 |
| keywords[19].display_name | Artificial intelligence |
| keywords[20].id | https://openalex.org/keywords/geometry |
| keywords[20].score | 0.11877483129501343 |
| keywords[20].display_name | Geometry |
| keywords[21].id | https://openalex.org/keywords/physics |
| keywords[21].score | 0.11868640780448914 |
| keywords[21].display_name | Physics |
| keywords[22].id | https://openalex.org/keywords/statistics |
| keywords[22].score | 0.07160630822181702 |
| keywords[22].display_name | Statistics |
| keywords[23].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[23].score | 0.06639418005943298 |
| keywords[23].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.08242 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.08242 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.08242 |
| locations[1].id | doi:10.48550/arxiv.2204.08242 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.08242 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109420627 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jarek Duda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duda, Jarek |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.08242 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-26T00:00:00 |
| display_name | Fast optimization of common basis for matrix set through Common Singular Value Decomposition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10792 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9810000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Matrix Theory and Algorithms |
| related_works | https://openalex.org/W2096954214, https://openalex.org/W2105364485, https://openalex.org/W2055144662, https://openalex.org/W2043909416, https://openalex.org/W2370850565, https://openalex.org/W2805026464, https://openalex.org/W2004773025, https://openalex.org/W2963815419, https://openalex.org/W2363331359, https://openalex.org/W2035555321 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.08242 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.08242 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.08242 |
| primary_location.id | pmh:oai:arXiv.org:2204.08242 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.08242 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.08242 |
| publication_date | 2022-04-18 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 71, 149 |
| abstract_inverted_index.A | 148 |
| abstract_inverted_index.a | 18, 25, 36, 85 |
| abstract_inverted_index.$A | 146 |
| abstract_inverted_index.as | 72, 114 |
| abstract_inverted_index.be | 80, 95 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.is | 4, 55, 61, 99 |
| abstract_inverted_index.of | 6, 10, 27, 53, 64, 77, 116, 118, 125 |
| abstract_inverted_index.on | 108 |
| abstract_inverted_index.to | 14, 34 |
| abstract_inverted_index.we | 23, 111 |
| abstract_inverted_index.$U$ | 113 |
| abstract_inverted_index.$V$ | 124 |
| abstract_inverted_index.A_k | 50 |
| abstract_inverted_index.For | 58 |
| abstract_inverted_index.SVD | 0 |
| abstract_inverted_index.\to | 147 |
| abstract_inverted_index.and | 31, 123 |
| abstract_inverted_index.are | 132, 136 |
| abstract_inverted_index.c_j | 154 |
| abstract_inverted_index.can | 79 |
| abstract_inverted_index.for | 17, 40, 84 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.set | 26, 52 |
| abstract_inverted_index.the | 7 |
| abstract_inverted_index.$U$, | 45 |
| abstract_inverted_index.$V$, | 46 |
| abstract_inverted_index.(A_k | 121 |
| abstract_inverted_index.1/2, | 141 |
| abstract_inverted_index.CSVD | 101 |
| abstract_inverted_index.SVD. | 109 |
| abstract_inverted_index.V\}$ | 51 |
| abstract_inverted_index.also | 89 |
| abstract_inverted_index.e.g. | 140, 145 |
| abstract_inverted_index.fast | 104 |
| abstract_inverted_index.find | 42 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.kind | 76 |
| abstract_inverted_index.like | 33 |
| abstract_inverted_index.some | 137 |
| abstract_inverted_index.such | 47 |
| abstract_inverted_index.that | 48 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.used | 67 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.$w_k$ | 131 |
| abstract_inverted_index.SVD): | 103 |
| abstract_inverted_index.While | 88 |
| abstract_inverted_index.based | 107 |
| abstract_inverted_index.basic | 8 |
| abstract_inverted_index.basis | 16, 39, 63, 78 |
| abstract_inverted_index.built | 115 |
| abstract_inverted_index.given | 19, 86 |
| abstract_inverted_index.here, | 74 |
| abstract_inverted_index.might | 94 |
| abstract_inverted_index.rc^T$ | 150 |
| abstract_inverted_index.their | 133 |
| abstract_inverted_index.them: | 41 |
| abstract_inverted_index.there | 98 |
| abstract_inverted_index.tools | 9 |
| abstract_inverted_index.value | 2 |
| abstract_inverted_index.where | 130, 151 |
| abstract_inverted_index.would | 32 |
| abstract_inverted_index.$\{U^T | 49 |
| abstract_inverted_index.(A_k^T | 128 |
| abstract_inverted_index.DCT-II | 60 |
| abstract_inverted_index.choose | 112 |
| abstract_inverted_index.chosen | 138 |
| abstract_inverted_index.common | 38 |
| abstract_inverted_index.powers | 139 |
| abstract_inverted_index.single | 37 |
| abstract_inverted_index.$\sum_i | 119 |
| abstract_inverted_index.$\sum_k | 126 |
| abstract_inverted_index.(common | 102 |
| abstract_inverted_index.(w_k)^q | 120, 127 |
| abstract_inverted_index.=\sum_i | 155 |
| abstract_inverted_index.A_{ij}, | 153 |
| abstract_inverted_index.costly, | 97 |
| abstract_inverted_index.descent | 92 |
| abstract_inverted_index.example | 59 |
| abstract_inverted_index.general | 105 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.matrix. | 20 |
| abstract_inverted_index.quickly | 81 |
| abstract_inverted_index.somehow | 56 |
| abstract_inverted_index.A_k)^p$, | 129 |
| abstract_inverted_index.A_{ij}$. | 156 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.allowing | 13 |
| abstract_inverted_index.approach | 106 |
| abstract_inverted_index.commonly | 66 |
| abstract_inverted_index.dataset. | 87 |
| abstract_inverted_index.gradient | 91 |
| abstract_inverted_index.instead, | 30 |
| abstract_inverted_index.matrices | 28, 44, 54 |
| abstract_inverted_index.optimize | 15, 35 |
| abstract_inverted_index.proposed | 100 |
| abstract_inverted_index.simpler. | 57 |
| abstract_inverted_index.weights, | 134 |
| abstract_inverted_index.(singular | 1 |
| abstract_inverted_index.A_k^T)^p$ | 122 |
| abstract_inverted_index.discussed | 73, 90 |
| abstract_inverted_index.functions | 65 |
| abstract_inverted_index.learning, | 12 |
| abstract_inverted_index.optimized | 83 |
| abstract_inverted_index.sometimes | 22 |
| abstract_inverted_index.$p,q>0$ | 135 |
| abstract_inverted_index.optionally | 142 |
| abstract_inverted_index.orthogonal | 43 |
| abstract_inverted_index.$\{A_k\}_k$ | 29 |
| abstract_inverted_index.$r_i=\sum_j | 152 |
| abstract_inverted_index.compression | 70 |
| abstract_inverted_index.image/video | 69 |
| abstract_inverted_index.orthonormal | 62 |
| abstract_inverted_index.eigenvectors | 117 |
| abstract_inverted_index.optimization | 93 |
| abstract_inverted_index.Specifically, | 110 |
| abstract_inverted_index.automatically | 82 |
| abstract_inverted_index.normalization | 144 |
| abstract_inverted_index.decomposition) | 3 |
| abstract_inverted_index.computationally | 96 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109420627 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |