Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.12209
Pulsar timing arrays (PTAs) perform Bayesian posterior inference with expensive MCMC methods. Given a dataset of ~10-100 pulsars and O(10^3) timing residuals each, producing a posterior distribution for the stochastic gravitational wave background (SGWB) can take days to a week. The computational bottleneck arises because the likelihood evaluation required for MCMC is extremely costly when considering the dimensionality of the search space. Fortunately, generating simulated data is fast, so modern simulation-based inference techniques can be brought to bear on the problem. In this paper, we demonstrate how conditional normalizing flows trained on simulated data can be used for extremely fast and accurate estimation of the SGWB posteriors, reducing the sampling time from weeks to a matter of seconds.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.12209
- https://arxiv.org/pdf/2310.12209
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387837996
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387837996Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.12209Digital Object Identifier
- Title
-
Fast Parameter Inference on Pulsar Timing Arrays with Normalizing FlowsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-18Full publication date if available
- Authors
-
David Shih, Marat Freytsis, Stephen R. Taylor, Jeff A. Dror, Nolan SmythList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.12209Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.12209Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.12209Direct OA link when available
- Concepts
-
Bottleneck, Inference, Markov chain Monte Carlo, Computer science, Pulsar, Bayesian inference, Algorithm, Estimator, Initialization, Bayesian probability, Curse of dimensionality, Parameter space, Posterior probability, Artificial intelligence, Statistics, Mathematics, Astrophysics, Physics, Embedded system, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387837996 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.12209 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.12209 |
| ids.openalex | https://openalex.org/W4387837996 |
| fwci | |
| type | preprint |
| title | Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10463 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Pulsars and Gravitational Waves Research |
| topics[1].id | https://openalex.org/T11405 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Geophysics and Gravity Measurements |
| topics[2].id | https://openalex.org/T12450 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Radio Astronomy Observations and Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7276225090026855 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6341893672943115 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C111350023 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6268724203109741 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[2].display_name | Markov chain Monte Carlo |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6176119446754456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C110363677 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5568905472755432 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4360 |
| concepts[4].display_name | Pulsar |
| concepts[5].id | https://openalex.org/C160234255 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5346407294273376 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[5].display_name | Bayesian inference |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5319170355796814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C185429906 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4736032485961914 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[7].display_name | Estimator |
| concepts[8].id | https://openalex.org/C114466953 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4632128179073334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[8].display_name | Initialization |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4593631625175476 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C111030470 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4543461501598358 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[10].display_name | Curse of dimensionality |
| concepts[11].id | https://openalex.org/C73586568 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4468136429786682 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2600211 |
| concepts[11].display_name | Parameter space |
| concepts[12].id | https://openalex.org/C57830394 |
| concepts[12].level | 3 |
| concepts[12].score | 0.42396289110183716 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[12].display_name | Posterior probability |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25300177931785583 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.22690540552139282 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.20160603523254395 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C44870925 |
| concepts[16].level | 1 |
| concepts[16].score | 0.148565411567688 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[16].display_name | Astrophysics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.14125341176986694 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C149635348 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[18].display_name | Embedded system |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.7276225090026855 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6341893672943115 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[2].score | 0.6268724203109741 |
| keywords[2].display_name | Markov chain Monte Carlo |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6176119446754456 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pulsar |
| keywords[4].score | 0.5568905472755432 |
| keywords[4].display_name | Pulsar |
| keywords[5].id | https://openalex.org/keywords/bayesian-inference |
| keywords[5].score | 0.5346407294273376 |
| keywords[5].display_name | Bayesian inference |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.5319170355796814 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/estimator |
| keywords[7].score | 0.4736032485961914 |
| keywords[7].display_name | Estimator |
| keywords[8].id | https://openalex.org/keywords/initialization |
| keywords[8].score | 0.4632128179073334 |
| keywords[8].display_name | Initialization |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.4593631625175476 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[10].score | 0.4543461501598358 |
| keywords[10].display_name | Curse of dimensionality |
| keywords[11].id | https://openalex.org/keywords/parameter-space |
| keywords[11].score | 0.4468136429786682 |
| keywords[11].display_name | Parameter space |
| keywords[12].id | https://openalex.org/keywords/posterior-probability |
| keywords[12].score | 0.42396289110183716 |
| keywords[12].display_name | Posterior probability |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.25300177931785583 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.22690540552139282 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.20160603523254395 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/astrophysics |
| keywords[16].score | 0.148565411567688 |
| keywords[16].display_name | Astrophysics |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.14125341176986694 |
| keywords[17].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.12209 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.12209 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.12209 |
| locations[1].id | doi:10.48550/arxiv.2310.12209 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.12209 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072503522 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3408-3871 |
| authorships[0].author.display_name | David Shih |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shih, David |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073792246 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6427-2895 |
| authorships[1].author.display_name | Marat Freytsis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Freytsis, Marat |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076893965 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Stephen R. Taylor |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taylor, Stephen R. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073698812 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0110-6184 |
| authorships[3].author.display_name | Jeff A. Dror |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dror, Jeff A. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5054285332 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8454-3015 |
| authorships[4].author.display_name | Nolan Smyth |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Smyth, Nolan |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.12209 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10463 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Pulsars and Gravitational Waves Research |
| related_works | https://openalex.org/W71678127, https://openalex.org/W2157655363, https://openalex.org/W4205763938, https://openalex.org/W2292189132, https://openalex.org/W4288092343, https://openalex.org/W4386114318, https://openalex.org/W2134332527, https://openalex.org/W2888496681, https://openalex.org/W2790979771, https://openalex.org/W4289670352 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.12209 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.12209 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.12209 |
| primary_location.id | pmh:oai:arXiv.org:2310.12209 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.12209 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.12209 |
| publication_date | 2023-10-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 24, 38, 114 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.be | 74, 95 |
| abstract_inverted_index.is | 51, 66 |
| abstract_inverted_index.of | 15, 58, 103, 116 |
| abstract_inverted_index.on | 78, 91 |
| abstract_inverted_index.so | 68 |
| abstract_inverted_index.to | 37, 76, 113 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.The | 40 |
| abstract_inverted_index.and | 18, 100 |
| abstract_inverted_index.can | 34, 73, 94 |
| abstract_inverted_index.for | 27, 49, 97 |
| abstract_inverted_index.how | 86 |
| abstract_inverted_index.the | 28, 45, 56, 59, 79, 104, 108 |
| abstract_inverted_index.MCMC | 10, 50 |
| abstract_inverted_index.SGWB | 105 |
| abstract_inverted_index.bear | 77 |
| abstract_inverted_index.data | 65, 93 |
| abstract_inverted_index.days | 36 |
| abstract_inverted_index.fast | 99 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.take | 35 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.time | 110 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.wave | 31 |
| abstract_inverted_index.when | 54 |
| abstract_inverted_index.with | 8 |
| abstract_inverted_index.Given | 12 |
| abstract_inverted_index.each, | 22 |
| abstract_inverted_index.fast, | 67 |
| abstract_inverted_index.flows | 89 |
| abstract_inverted_index.week. | 39 |
| abstract_inverted_index.weeks | 112 |
| abstract_inverted_index.(PTAs) | 3 |
| abstract_inverted_index.(SGWB) | 33 |
| abstract_inverted_index.Pulsar | 0 |
| abstract_inverted_index.arises | 43 |
| abstract_inverted_index.arrays | 2 |
| abstract_inverted_index.costly | 53 |
| abstract_inverted_index.matter | 115 |
| abstract_inverted_index.modern | 69 |
| abstract_inverted_index.paper, | 83 |
| abstract_inverted_index.search | 60 |
| abstract_inverted_index.space. | 61 |
| abstract_inverted_index.timing | 1, 20 |
| abstract_inverted_index.O(10^3) | 19 |
| abstract_inverted_index.because | 44 |
| abstract_inverted_index.brought | 75 |
| abstract_inverted_index.dataset | 14 |
| abstract_inverted_index.perform | 4 |
| abstract_inverted_index.pulsars | 17 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.~10-100 | 16 |
| abstract_inverted_index.Bayesian | 5 |
| abstract_inverted_index.accurate | 101 |
| abstract_inverted_index.methods. | 11 |
| abstract_inverted_index.problem. | 80 |
| abstract_inverted_index.reducing | 107 |
| abstract_inverted_index.required | 48 |
| abstract_inverted_index.sampling | 109 |
| abstract_inverted_index.seconds. | 117 |
| abstract_inverted_index.expensive | 9 |
| abstract_inverted_index.extremely | 52, 98 |
| abstract_inverted_index.inference | 7, 71 |
| abstract_inverted_index.posterior | 6, 25 |
| abstract_inverted_index.producing | 23 |
| abstract_inverted_index.residuals | 21 |
| abstract_inverted_index.simulated | 64, 92 |
| abstract_inverted_index.background | 32 |
| abstract_inverted_index.bottleneck | 42 |
| abstract_inverted_index.estimation | 102 |
| abstract_inverted_index.evaluation | 47 |
| abstract_inverted_index.generating | 63 |
| abstract_inverted_index.likelihood | 46 |
| abstract_inverted_index.stochastic | 29 |
| abstract_inverted_index.techniques | 72 |
| abstract_inverted_index.conditional | 87 |
| abstract_inverted_index.considering | 55 |
| abstract_inverted_index.demonstrate | 85 |
| abstract_inverted_index.normalizing | 88 |
| abstract_inverted_index.posteriors, | 106 |
| abstract_inverted_index.Fortunately, | 62 |
| abstract_inverted_index.distribution | 26 |
| abstract_inverted_index.computational | 41 |
| abstract_inverted_index.gravitational | 30 |
| abstract_inverted_index.dimensionality | 57 |
| abstract_inverted_index.simulation-based | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |