Fast Time-Varying mmWave Channel Estimation: A Rank-Aware Matrix Completion Approach Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.00607
We consider the problem of high-dimensional channel estimation in fast time-varying millimeter-wave MIMO systems with a hybrid architecture. By exploiting the low-rank and sparsity properties of the channel matrix, we propose a two-phase compressed sensing framework consisting of observation matrix completion and channel matrix sparse recovery, respectively. First, we formulate the observation matrix completion problem as a low-rank matrix completion (LRMC) problem and develop a robust rank-one matrix completion (R1MC) algorithm that enables the matrix and its rank to iteratively update. This approach achieves high-precision completion of the observation matrix and explicit rank estimation without prior knowledge. Second, we devise a rank-aware batch orthogonal matching pursuit (OMP) method for achieving low-latency sparse channel recovery. To handle abrupt rank changes caused by user mobility, we establish a discrete-time autoregressive (AR) model that leverages the temporal rank correlation between continuous-time instances to obtain a complete observation matrix capable of perceiving rank changes for more accurate channel estimates. Simulation results confirm the effectiveness of the proposed channel estimation frame and demonstrate that our algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.00607
- https://arxiv.org/pdf/2511.00607
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415938540
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415938540Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.00607Digital Object Identifier
- Title
-
Fast Time-Varying mmWave Channel Estimation: A Rank-Aware Matrix Completion ApproachWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
Tianyu Jiang, Yan Yang, Hongjin Liu, Runyu Han, Bo Ai, Mohsen GuizaniList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.00607Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.00607Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.00607Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415938540 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.00607 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.00607 |
| ids.openalex | https://openalex.org/W4415938540 |
| fwci | |
| type | preprint |
| title | Fast Time-Varying mmWave Channel Estimation: A Rank-Aware Matrix Completion Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.00607 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.00607 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.00607 |
| locations[1].id | doi:10.48550/arxiv.2511.00607 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.00607 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101803941 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-7418-1193 |
| authorships[0].author.display_name | Tianyu Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Tianyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024061265 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5798-3632 |
| authorships[1].author.display_name | Yan Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Yan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101701693 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3900-3036 |
| authorships[2].author.display_name | Hongjin Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Hongjin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113364314 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Runyu Han |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Han, Runyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100620739 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6850-0595 |
| authorships[4].author.display_name | Bo Ai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ai, Bo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5057916222 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8972-8094 |
| authorships[5].author.display_name | Mohsen Guizani |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Guizani, Mohsen |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.00607 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Fast Time-Varying mmWave Channel Estimation: A Rank-Aware Matrix Completion Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-07T23:20:04.922697 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.00607 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.00607 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.00607 |
| primary_location.id | pmh:oai:arXiv.org:2511.00607 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.00607 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.00607 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 31, 56, 64, 100, 125, 141 |
| abstract_inverted_index.By | 18 |
| abstract_inverted_index.To | 114 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.by | 120 |
| abstract_inverted_index.in | 8, 174 |
| abstract_inverted_index.of | 4, 25, 37, 86, 146, 160 |
| abstract_inverted_index.to | 78, 139 |
| abstract_inverted_index.we | 29, 48, 98, 123 |
| abstract_inverted_index.and | 22, 41, 62, 75, 90, 166 |
| abstract_inverted_index.for | 108, 150 |
| abstract_inverted_index.its | 76 |
| abstract_inverted_index.our | 169 |
| abstract_inverted_index.the | 2, 20, 26, 50, 73, 87, 132, 158, 161 |
| abstract_inverted_index.(AR) | 128 |
| abstract_inverted_index.MIMO | 12 |
| abstract_inverted_index.This | 81 |
| abstract_inverted_index.fast | 9 |
| abstract_inverted_index.more | 151 |
| abstract_inverted_index.rank | 77, 92, 117, 134, 148 |
| abstract_inverted_index.that | 71, 130, 168 |
| abstract_inverted_index.user | 121 |
| abstract_inverted_index.with | 14, 178 |
| abstract_inverted_index.(OMP) | 106 |
| abstract_inverted_index.batch | 102 |
| abstract_inverted_index.frame | 165 |
| abstract_inverted_index.model | 129 |
| abstract_inverted_index.prior | 95 |
| abstract_inverted_index.(LRMC) | 60 |
| abstract_inverted_index.(R1MC) | 69 |
| abstract_inverted_index.First, | 47 |
| abstract_inverted_index.abrupt | 116 |
| abstract_inverted_index.caused | 119 |
| abstract_inverted_index.devise | 99 |
| abstract_inverted_index.handle | 115 |
| abstract_inverted_index.hybrid | 16 |
| abstract_inverted_index.matrix | 39, 43, 52, 58, 67, 74, 89, 144, 176 |
| abstract_inverted_index.method | 107 |
| abstract_inverted_index.obtain | 140 |
| abstract_inverted_index.robust | 65 |
| abstract_inverted_index.sparse | 44, 111 |
| abstract_inverted_index.Second, | 97 |
| abstract_inverted_index.achieve | 171 |
| abstract_inverted_index.between | 136 |
| abstract_inverted_index.capable | 145 |
| abstract_inverted_index.changes | 118, 149 |
| abstract_inverted_index.channel | 6, 27, 42, 112, 153, 163 |
| abstract_inverted_index.confirm | 157 |
| abstract_inverted_index.develop | 63 |
| abstract_inverted_index.enables | 72 |
| abstract_inverted_index.matrix, | 28 |
| abstract_inverted_index.problem | 3, 54, 61 |
| abstract_inverted_index.propose | 30 |
| abstract_inverted_index.pursuit | 105 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.sensing | 34 |
| abstract_inverted_index.systems | 13 |
| abstract_inverted_index.update. | 80 |
| abstract_inverted_index.without | 94 |
| abstract_inverted_index.accurate | 152 |
| abstract_inverted_index.achieves | 83 |
| abstract_inverted_index.approach | 82 |
| abstract_inverted_index.complete | 142 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.explicit | 91 |
| abstract_inverted_index.low-rank | 21, 57, 175 |
| abstract_inverted_index.matching | 104 |
| abstract_inverted_index.proposed | 162 |
| abstract_inverted_index.rank-one | 66 |
| abstract_inverted_index.recovery | 177 |
| abstract_inverted_index.sparsity | 23 |
| abstract_inverted_index.temporal | 133 |
| abstract_inverted_index.achieving | 109 |
| abstract_inverted_index.algorithm | 70 |
| abstract_inverted_index.establish | 124 |
| abstract_inverted_index.formulate | 49 |
| abstract_inverted_index.framework | 35 |
| abstract_inverted_index.instances | 138 |
| abstract_inverted_index.leverages | 131 |
| abstract_inverted_index.mobility, | 122 |
| abstract_inverted_index.recovery, | 45 |
| abstract_inverted_index.recovery. | 113 |
| abstract_inverted_index.two-phase | 32 |
| abstract_inverted_index.Simulation | 155 |
| abstract_inverted_index.algorithms | 170 |
| abstract_inverted_index.completion | 40, 53, 59, 68, 85 |
| abstract_inverted_index.compressed | 33 |
| abstract_inverted_index.consisting | 36 |
| abstract_inverted_index.estimates. | 154 |
| abstract_inverted_index.estimation | 7, 93, 164 |
| abstract_inverted_index.exploiting | 19 |
| abstract_inverted_index.knowledge. | 96 |
| abstract_inverted_index.orthogonal | 103 |
| abstract_inverted_index.perceiving | 147 |
| abstract_inverted_index.properties | 24 |
| abstract_inverted_index.rank-aware | 101 |
| abstract_inverted_index.correlation | 135 |
| abstract_inverted_index.demonstrate | 167 |
| abstract_inverted_index.guarantees. | 180 |
| abstract_inverted_index.iteratively | 79 |
| abstract_inverted_index.low-latency | 110 |
| abstract_inverted_index.observation | 38, 51, 88, 143 |
| abstract_inverted_index.performance | 173 |
| abstract_inverted_index.theoretical | 179 |
| abstract_inverted_index.time-varying | 10 |
| abstract_inverted_index.architecture. | 17 |
| abstract_inverted_index.discrete-time | 126 |
| abstract_inverted_index.effectiveness | 159 |
| abstract_inverted_index.respectively. | 46 |
| abstract_inverted_index.autoregressive | 127 |
| abstract_inverted_index.high-precision | 84 |
| abstract_inverted_index.continuous-time | 137 |
| abstract_inverted_index.millimeter-wave | 11 |
| abstract_inverted_index.high-dimensional | 5 |
| abstract_inverted_index.state-of-the-art | 172 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |