FasTag: Automatic text classification of unstructured medical narratives Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0234647
Unstructured clinical narratives are continuously being recorded as part of delivery of care in electronic health records, and dedicated tagging staff spend considerable effort manually assigning clinical codes for billing purposes. Despite these efforts, however, label availability and accuracy are both suboptimal. In this retrospective study, we aimed to automate the assignment of top-level International Classification of Diseases version 9 (ICD-9) codes to clinical records from human and veterinary data stores using minimal manual labor and feature curation. Automating top-level annotations could in turn enable rapid cohort identification, especially in a veterinary setting. To this end, we trained long short-term memory (LSTM) recurrent neural networks (RNNs) on 52,722 human and 89,591 veterinary records. We investigated the accuracy of both separate-domain and combined-domain models and probed model portability. We established relevant baseline classification performances by training Decision Trees (DT) and Random Forests (RF). We also investigated whether transforming the data using MetaMap Lite, a clinical natural language processing tool, affected classification performance. We showed that the LSTM-RNNs accurately classify veterinary and human text narratives into top-level categories with an average weighted macro F1 score of 0.74 and 0.68 respectively. In the "neoplasia" category, the model trained on veterinary data had a high validation accuracy in veterinary data and moderate accuracy in human data, with F1 scores of 0.91 and 0.70 respectively. Our LSTM method scored slightly higher than that of the DT and RF models. The use of LSTM-RNN models represents a scalable structure that could prove useful in cohort identification for comparative oncology studies. Digitization of human and veterinary health information will continue to be a reality, particularly in the form of unstructured narratives. Our approach is a step forward for these two domains to learn from and inform one another.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0234647
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printable
- OA Status
- gold
- Cited By
- 41
- References
- 81
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036927603
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036927603Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0234647Digital Object Identifier
- Title
-
FasTag: Automatic text classification of unstructured medical narrativesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-22Full publication date if available
- Authors
-
Guhan Venkataraman, Arturo López Pineda, Oliver J. Bear Don’t Walk, Ashley Zehnder, Sandeep Ayyar, Rodney L. Page, Carlos D. Bustamante, Manuel A. RivasList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0234647Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printableDirect OA link when available
- Concepts
-
F1 score, Recurrent neural network, Artificial intelligence, Computer science, Random forest, Medical record, Software portability, Machine learning, Natural language processing, Medicine, Artificial neural network, Programming language, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
41Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 6, 2023: 5, 2022: 8, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036927603 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0234647 |
| ids.doi | https://doi.org/10.1371/journal.pone.0234647 |
| ids.mag | 3036927603 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32569327 |
| ids.openalex | https://openalex.org/W3036927603 |
| fwci | 2.63322827 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001331 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Automation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057225 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Data Mining |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D019992 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Databases as Topic |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000073935 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Narrative Medicine |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D015203 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Reproducibility of Results |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012984 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Software |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D013045 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Species Specificity |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000818 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Animals |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001331 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Automation |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D057225 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Data Mining |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D019992 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Databases as Topic |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000073935 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Narrative Medicine |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D015203 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Reproducibility of Results |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D012984 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Software |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D013045 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Species Specificity |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000818 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Animals |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D001331 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Automation |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D057225 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Data Mining |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D019992 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Databases as Topic |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000073935 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Narrative Medicine |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D015203 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Reproducibility of Results |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D012984 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Software |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D013045 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Species Specificity |
| type | article |
| title | FasTag: Automatic text classification of unstructured medical narratives |
| awards[0].id | https://openalex.org/G3693831305 |
| awards[0].funder_id | https://openalex.org/F4320337348 |
| awards[0].display_name | |
| awards[0].funder_award_id | 5U01 HG009080 |
| awards[0].funder_display_name | National Human Genome Research Institute |
| awards[1].id | https://openalex.org/G4298717095 |
| awards[1].funder_id | https://openalex.org/F4320337372 |
| awards[1].display_name | |
| awards[1].funder_award_id | T15 LM 007033 |
| awards[1].funder_display_name | U.S. National Library of Medicine |
| biblio.issue | 6 |
| biblio.volume | 15 |
| biblio.last_page | e0234647 |
| biblio.first_page | e0234647 |
| topics[0].id | https://openalex.org/T11710 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Biomedical Text Mining and Ontologies |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| funders[0].id | https://openalex.org/F4320337348 |
| funders[0].ror | https://ror.org/00baak391 |
| funders[0].display_name | National Human Genome Research Institute |
| funders[1].id | https://openalex.org/F4320337372 |
| funders[1].ror | https://ror.org/0060t0j89 |
| funders[1].display_name | U.S. National Library of Medicine |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C148524875 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7144424319267273 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[0].display_name | F1 score |
| concepts[1].id | https://openalex.org/C147168706 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7051725387573242 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[1].display_name | Recurrent neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.664631724357605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6510082483291626 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5457425117492676 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C195910791 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5296050310134888 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[5].display_name | Medical record |
| concepts[6].id | https://openalex.org/C63000827 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5080220699310303 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3080428 |
| concepts[6].display_name | Software portability |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4622912108898163 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44421249628067017 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3197375535964966 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.31628987193107605 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/f1-score |
| keywords[0].score | 0.7144424319267273 |
| keywords[0].display_name | F1 score |
| keywords[1].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[1].score | 0.7051725387573242 |
| keywords[1].display_name | Recurrent neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.664631724357605 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6510082483291626 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5457425117492676 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/medical-record |
| keywords[5].score | 0.5296050310134888 |
| keywords[5].display_name | Medical record |
| keywords[6].id | https://openalex.org/keywords/software-portability |
| keywords[6].score | 0.5080220699310303 |
| keywords[6].display_name | Software portability |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4622912108898163 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.44421249628067017 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.3197375535964966 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.31628987193107605 |
| keywords[10].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0234647 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0234647 |
| locations[1].id | pmid:32569327 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32569327 |
| locations[2].id | pmh:oai:doaj.org/article:eaecb0fb69b04760ae33474f226bb9e1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 15, Iss 6, p e0234647 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/eaecb0fb69b04760ae33474f226bb9e1 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7307763 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS One |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7307763 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5053857674 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0754-6631 |
| authorships[0].author.display_name | Guhan Venkataraman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guhan Ram Venkataraman |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[1].author.id | https://openalex.org/A5090097828 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3409-1815 |
| authorships[1].author.display_name | Arturo López Pineda |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arturo Lopez Pineda |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[2].author.id | https://openalex.org/A5012523508 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4310-9279 |
| authorships[2].author.display_name | Oliver J. Bear Don’t Walk |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America |
| authorships[2].institutions[0].id | https://openalex.org/I78577930 |
| authorships[2].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Columbia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oliver J. Bear Don’t Walk IV |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America |
| authorships[3].author.id | https://openalex.org/A5002430972 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9436-0637 |
| authorships[3].author.display_name | Ashley Zehnder |
| authorships[3].affiliations[0].raw_affiliation_string | Fauna Bio, San Francisco, CA, United States of America |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ashley M. Zehnder |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Fauna Bio, San Francisco, CA, United States of America |
| authorships[4].author.id | https://openalex.org/A5008925649 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2181-8886 |
| authorships[4].author.display_name | Sandeep Ayyar |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[4].institutions[0].id | https://openalex.org/I97018004 |
| authorships[4].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stanford University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sandeep Ayyar |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[5].author.id | https://openalex.org/A5089454973 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6094-7541 |
| authorships[5].author.display_name | Rodney L. Page |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America |
| authorships[5].institutions[0].id | https://openalex.org/I92446798 |
| authorships[5].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Colorado State University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rodney L. Page |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America |
| authorships[6].author.id | https://openalex.org/A5025246130 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4187-7920 |
| authorships[6].author.display_name | Carlos D. Bustamante |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210121800 |
| authorships[6].affiliations[1].raw_affiliation_string | Chan Zuckerberg Biohub, San Francisco, CA, United States of America |
| authorships[6].institutions[0].id | https://openalex.org/I4210121800 |
| authorships[6].institutions[0].ror | https://ror.org/02qenvm24 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210121800 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Chan Zuckerberg Initiative (United States) |
| authorships[6].institutions[1].id | https://openalex.org/I97018004 |
| authorships[6].institutions[1].ror | https://ror.org/00f54p054 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I97018004 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Stanford University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Carlos D. Bustamante |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Chan Zuckerberg Biohub, San Francisco, CA, United States of America, Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[7].author.id | https://openalex.org/A5073710029 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1457-9925 |
| authorships[7].author.display_name | Manuel A. Rivas |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| authorships[7].institutions[0].id | https://openalex.org/I97018004 |
| authorships[7].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Stanford University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Manuel A. Rivas |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, United States of America |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FasTag: Automatic text classification of unstructured medical narratives |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11710 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Biomedical Text Mining and Ontologies |
| related_works | https://openalex.org/W107105315, https://openalex.org/W4367156293, https://openalex.org/W1584537303, https://openalex.org/W4388155270, https://openalex.org/W1872724644, https://openalex.org/W2750549761, https://openalex.org/W28826848, https://openalex.org/W2122272819, https://openalex.org/W2130894091, https://openalex.org/W2994151208 |
| cited_by_count | 41 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0234647 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0234647 |
| primary_location.id | doi:10.1371/journal.pone.0234647 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234647&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0234647 |
| publication_date | 2020-06-22 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2004198484, https://openalex.org/W1548184736, https://openalex.org/W2163158620, https://openalex.org/W242585788, https://openalex.org/W1963589686, https://openalex.org/W271409215, https://openalex.org/W134354796, https://openalex.org/W2039713461, https://openalex.org/W2272585968, https://openalex.org/W215236558, https://openalex.org/W2148452585, https://openalex.org/W2140539896, https://openalex.org/W1550258693, https://openalex.org/W2066510693, https://openalex.org/W2434522896, https://openalex.org/W2168742788, https://openalex.org/W2076756220, https://openalex.org/W1981012806, https://openalex.org/W1808652302, https://openalex.org/W2897056441, https://openalex.org/W2889554348, https://openalex.org/W2260324989, https://openalex.org/W2201086533, https://openalex.org/W2886544137, https://openalex.org/W2042028253, https://openalex.org/W2169818249, https://openalex.org/W1504212872, https://openalex.org/W2168435845, https://openalex.org/W49934205, https://openalex.org/W1550946049, https://openalex.org/W1602694398, https://openalex.org/W1979945892, https://openalex.org/W2159636537, https://openalex.org/W2146089916, https://openalex.org/W2043768386, https://openalex.org/W2161244558, https://openalex.org/W2395905864, https://openalex.org/W2468018615, https://openalex.org/W2153579005, https://openalex.org/W2927032858, https://openalex.org/W1550668049, https://openalex.org/W2902743766, https://openalex.org/W1983556205, https://openalex.org/W2906621936, https://openalex.org/W2622827166, https://openalex.org/W2768567289, https://openalex.org/W2901643192, https://openalex.org/W2789244308, https://openalex.org/W1637593105, https://openalex.org/W2784499877, https://openalex.org/W2396881363, https://openalex.org/W2808226548, https://openalex.org/W2109317245, https://openalex.org/W2255847468, https://openalex.org/W2310019519, https://openalex.org/W6675354045, https://openalex.org/W2895486342, https://openalex.org/W6632812989, https://openalex.org/W2770445088, https://openalex.org/W2125555727, https://openalex.org/W3098949126, https://openalex.org/W2239231358, https://openalex.org/W4294170691, https://openalex.org/W2582146834, https://openalex.org/W2604377373, https://openalex.org/W2250539671, https://openalex.org/W2772121968, https://openalex.org/W2093157872, https://openalex.org/W2950035161, https://openalex.org/W2612994670, https://openalex.org/W2893396084, https://openalex.org/W2144554665, https://openalex.org/W2271840356, https://openalex.org/W1999183545, https://openalex.org/W2308663833, https://openalex.org/W1964625659, https://openalex.org/W2906230340, https://openalex.org/W2021452923, https://openalex.org/W3015923477, https://openalex.org/W2514033258, https://openalex.org/W2101234009 |
| referenced_works_count | 81 |
| abstract_inverted_index.9 | 59 |
| abstract_inverted_index.a | 90, 152, 199, 240, 265, 277 |
| abstract_inverted_index.DT | 230 |
| abstract_inverted_index.F1 | 181, 213 |
| abstract_inverted_index.In | 42, 188 |
| abstract_inverted_index.RF | 232 |
| abstract_inverted_index.To | 93 |
| abstract_inverted_index.We | 113, 127, 142, 161 |
| abstract_inverted_index.an | 177 |
| abstract_inverted_index.as | 7 |
| abstract_inverted_index.be | 264 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 13, 82, 89, 203, 209, 247, 268 |
| abstract_inverted_index.is | 276 |
| abstract_inverted_index.of | 9, 11, 52, 56, 117, 183, 215, 228, 236, 255, 271 |
| abstract_inverted_index.on | 106, 195 |
| abstract_inverted_index.to | 48, 62, 263, 284 |
| abstract_inverted_index.we | 46, 96 |
| abstract_inverted_index.Our | 220, 274 |
| abstract_inverted_index.The | 234 |
| abstract_inverted_index.and | 17, 37, 67, 75, 109, 120, 123, 138, 169, 185, 206, 217, 231, 257, 287 |
| abstract_inverted_index.are | 3, 39 |
| abstract_inverted_index.for | 28, 250, 280 |
| abstract_inverted_index.had | 198 |
| abstract_inverted_index.one | 289 |
| abstract_inverted_index.the | 50, 115, 147, 164, 189, 192, 229, 269 |
| abstract_inverted_index.two | 282 |
| abstract_inverted_index.use | 235 |
| abstract_inverted_index.(DT) | 137 |
| abstract_inverted_index.0.68 | 186 |
| abstract_inverted_index.0.70 | 218 |
| abstract_inverted_index.0.74 | 184 |
| abstract_inverted_index.0.91 | 216 |
| abstract_inverted_index.LSTM | 221 |
| abstract_inverted_index.also | 143 |
| abstract_inverted_index.both | 40, 118 |
| abstract_inverted_index.care | 12 |
| abstract_inverted_index.data | 69, 148, 197, 205 |
| abstract_inverted_index.end, | 95 |
| abstract_inverted_index.form | 270 |
| abstract_inverted_index.from | 65, 286 |
| abstract_inverted_index.high | 200 |
| abstract_inverted_index.into | 173 |
| abstract_inverted_index.long | 98 |
| abstract_inverted_index.part | 8 |
| abstract_inverted_index.step | 278 |
| abstract_inverted_index.text | 171 |
| abstract_inverted_index.than | 226 |
| abstract_inverted_index.that | 163, 227, 243 |
| abstract_inverted_index.this | 43, 94 |
| abstract_inverted_index.turn | 83 |
| abstract_inverted_index.will | 261 |
| abstract_inverted_index.with | 176, 212 |
| abstract_inverted_index.(RF). | 141 |
| abstract_inverted_index.Lite, | 151 |
| abstract_inverted_index.Trees | 136 |
| abstract_inverted_index.aimed | 47 |
| abstract_inverted_index.being | 5 |
| abstract_inverted_index.codes | 27, 61 |
| abstract_inverted_index.could | 81, 244 |
| abstract_inverted_index.data, | 211 |
| abstract_inverted_index.human | 66, 108, 170, 210, 256 |
| abstract_inverted_index.label | 35 |
| abstract_inverted_index.labor | 74 |
| abstract_inverted_index.learn | 285 |
| abstract_inverted_index.macro | 180 |
| abstract_inverted_index.model | 125, 193 |
| abstract_inverted_index.prove | 245 |
| abstract_inverted_index.rapid | 85 |
| abstract_inverted_index.score | 182 |
| abstract_inverted_index.spend | 21 |
| abstract_inverted_index.staff | 20 |
| abstract_inverted_index.these | 32, 281 |
| abstract_inverted_index.tool, | 157 |
| abstract_inverted_index.using | 71, 149 |
| abstract_inverted_index.(LSTM) | 101 |
| abstract_inverted_index.(RNNs) | 105 |
| abstract_inverted_index.52,722 | 107 |
| abstract_inverted_index.89,591 | 110 |
| abstract_inverted_index.Random | 139 |
| abstract_inverted_index.cohort | 86, 248 |
| abstract_inverted_index.effort | 23 |
| abstract_inverted_index.enable | 84 |
| abstract_inverted_index.health | 15, 259 |
| abstract_inverted_index.higher | 225 |
| abstract_inverted_index.inform | 288 |
| abstract_inverted_index.manual | 73 |
| abstract_inverted_index.memory | 100 |
| abstract_inverted_index.method | 222 |
| abstract_inverted_index.models | 122, 238 |
| abstract_inverted_index.neural | 103 |
| abstract_inverted_index.probed | 124 |
| abstract_inverted_index.scored | 223 |
| abstract_inverted_index.scores | 214 |
| abstract_inverted_index.showed | 162 |
| abstract_inverted_index.stores | 70 |
| abstract_inverted_index.study, | 45 |
| abstract_inverted_index.useful | 246 |
| abstract_inverted_index.(ICD-9) | 60 |
| abstract_inverted_index.Despite | 31 |
| abstract_inverted_index.Forests | 140 |
| abstract_inverted_index.MetaMap | 150 |
| abstract_inverted_index.average | 178 |
| abstract_inverted_index.billing | 29 |
| abstract_inverted_index.domains | 283 |
| abstract_inverted_index.feature | 76 |
| abstract_inverted_index.forward | 279 |
| abstract_inverted_index.minimal | 72 |
| abstract_inverted_index.models. | 233 |
| abstract_inverted_index.natural | 154 |
| abstract_inverted_index.records | 64 |
| abstract_inverted_index.tagging | 19 |
| abstract_inverted_index.trained | 97, 194 |
| abstract_inverted_index.version | 58 |
| abstract_inverted_index.whether | 145 |
| abstract_inverted_index.Decision | 135 |
| abstract_inverted_index.Diseases | 57 |
| abstract_inverted_index.LSTM-RNN | 237 |
| abstract_inverted_index.accuracy | 38, 116, 202, 208 |
| abstract_inverted_index.affected | 158 |
| abstract_inverted_index.another. | 290 |
| abstract_inverted_index.approach | 275 |
| abstract_inverted_index.automate | 49 |
| abstract_inverted_index.baseline | 130 |
| abstract_inverted_index.classify | 167 |
| abstract_inverted_index.clinical | 1, 26, 63, 153 |
| abstract_inverted_index.continue | 262 |
| abstract_inverted_index.delivery | 10 |
| abstract_inverted_index.efforts, | 33 |
| abstract_inverted_index.however, | 34 |
| abstract_inverted_index.language | 155 |
| abstract_inverted_index.manually | 24 |
| abstract_inverted_index.moderate | 207 |
| abstract_inverted_index.networks | 104 |
| abstract_inverted_index.oncology | 252 |
| abstract_inverted_index.reality, | 266 |
| abstract_inverted_index.recorded | 6 |
| abstract_inverted_index.records, | 16 |
| abstract_inverted_index.records. | 112 |
| abstract_inverted_index.relevant | 129 |
| abstract_inverted_index.scalable | 241 |
| abstract_inverted_index.setting. | 92 |
| abstract_inverted_index.slightly | 224 |
| abstract_inverted_index.studies. | 253 |
| abstract_inverted_index.training | 134 |
| abstract_inverted_index.weighted | 179 |
| abstract_inverted_index.LSTM-RNNs | 165 |
| abstract_inverted_index.assigning | 25 |
| abstract_inverted_index.category, | 191 |
| abstract_inverted_index.curation. | 77 |
| abstract_inverted_index.dedicated | 18 |
| abstract_inverted_index.purposes. | 30 |
| abstract_inverted_index.recurrent | 102 |
| abstract_inverted_index.structure | 242 |
| abstract_inverted_index.top-level | 53, 79, 174 |
| abstract_inverted_index.Automating | 78 |
| abstract_inverted_index.accurately | 166 |
| abstract_inverted_index.assignment | 51 |
| abstract_inverted_index.categories | 175 |
| abstract_inverted_index.electronic | 14 |
| abstract_inverted_index.especially | 88 |
| abstract_inverted_index.narratives | 2, 172 |
| abstract_inverted_index.processing | 156 |
| abstract_inverted_index.represents | 239 |
| abstract_inverted_index.short-term | 99 |
| abstract_inverted_index.validation | 201 |
| abstract_inverted_index.veterinary | 68, 91, 111, 168, 196, 204, 258 |
| abstract_inverted_index."neoplasia" | 190 |
| abstract_inverted_index.annotations | 80 |
| abstract_inverted_index.comparative | 251 |
| abstract_inverted_index.established | 128 |
| abstract_inverted_index.information | 260 |
| abstract_inverted_index.narratives. | 273 |
| abstract_inverted_index.suboptimal. | 41 |
| abstract_inverted_index.Digitization | 254 |
| abstract_inverted_index.Unstructured | 0 |
| abstract_inverted_index.availability | 36 |
| abstract_inverted_index.considerable | 22 |
| abstract_inverted_index.continuously | 4 |
| abstract_inverted_index.investigated | 114, 144 |
| abstract_inverted_index.particularly | 267 |
| abstract_inverted_index.performance. | 160 |
| abstract_inverted_index.performances | 132 |
| abstract_inverted_index.portability. | 126 |
| abstract_inverted_index.transforming | 146 |
| abstract_inverted_index.unstructured | 272 |
| abstract_inverted_index.International | 54 |
| abstract_inverted_index.respectively. | 187, 219 |
| abstract_inverted_index.retrospective | 44 |
| abstract_inverted_index.Classification | 55 |
| abstract_inverted_index.classification | 131, 159 |
| abstract_inverted_index.identification | 249 |
| abstract_inverted_index.combined-domain | 121 |
| abstract_inverted_index.identification, | 87 |
| abstract_inverted_index.separate-domain | 119 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5073710029, https://openalex.org/A5002430972, https://openalex.org/A5053857674, https://openalex.org/A5008925649, https://openalex.org/A5089454973, https://openalex.org/A5025246130, https://openalex.org/A5012523508, https://openalex.org/A5090097828 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210121800, https://openalex.org/I78577930, https://openalex.org/I92446798, https://openalex.org/I97018004 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.89547509 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |