FastFlows: Flow-Based Models for Molecular Graph Generation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.12419
We propose a framework using normalizing-flow based models, SELF-Referencing Embedded Strings, and multi-objective optimization that efficiently generates small molecules. With an initial training set of only 100 small molecules, FastFlows generates thousands of chemically valid molecules in seconds. Because of the efficient sampling, substructure filters can be applied as desired to eliminate compounds with unreasonable moieties. Using easily computable and learned metrics for druglikeness, synthetic accessibility, and synthetic complexity, we perform a multi-objective optimization to demonstrate how FastFlows functions in a high-throughput virtual screening context. Our model is significantly simpler and easier to train than autoregressive molecular generative models, and enables fast generation and identification of druglike, synthesizable molecules.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.12419
- https://arxiv.org/pdf/2201.12419
- OA Status
- green
- Cited By
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221148789
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221148789Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.12419Digital Object Identifier
- Title
-
FastFlows: Flow-Based Models for Molecular Graph GenerationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-28Full publication date if available
- Authors
-
Nathan C. Frey, Vijay Gadepally, Bharath RamsundarList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.12419Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.12419Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.12419Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Autoregressive model, Set (abstract data type), Graph, Theoretical computer science, Virtual screening, Algorithm, Chemistry, Mathematics, Programming language, Molecular dynamics, Computational chemistry, Biology, Econometrics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 6, 2022: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221148789 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.12419 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.12419 |
| ids.openalex | https://openalex.org/W4221148789 |
| fwci | |
| type | preprint |
| title | FastFlows: Flow-Based Models for Molecular Graph Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T11407 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9793999791145325 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Innovative Microfluidic and Catalytic Techniques Innovation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7247439622879028 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.519309937953949 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C159877910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5181747674942017 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[2].display_name | Autoregressive model |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48789048194885254 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48332715034484863 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4779486656188965 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C103697762 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43257737159729004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4112105 |
| concepts[6].display_name | Virtual screening |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4130040407180786 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1773761510848999 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1564401388168335 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12361469864845276 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C59593255 |
| concepts[11].level | 2 |
| concepts[11].score | 0.10415586829185486 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q901663 |
| concepts[11].display_name | Molecular dynamics |
| concepts[12].id | https://openalex.org/C147597530 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08051079511642456 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[12].display_name | Computational chemistry |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7247439622879028 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.519309937953949 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/autoregressive-model |
| keywords[2].score | 0.5181747674942017 |
| keywords[2].display_name | Autoregressive model |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.48789048194885254 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.48332715034484863 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.4779486656188965 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/virtual-screening |
| keywords[6].score | 0.43257737159729004 |
| keywords[6].display_name | Virtual screening |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4130040407180786 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.1773761510848999 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.1564401388168335 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/programming-language |
| keywords[10].score | 0.12361469864845276 |
| keywords[10].display_name | Programming language |
| keywords[11].id | https://openalex.org/keywords/molecular-dynamics |
| keywords[11].score | 0.10415586829185486 |
| keywords[11].display_name | Molecular dynamics |
| keywords[12].id | https://openalex.org/keywords/computational-chemistry |
| keywords[12].score | 0.08051079511642456 |
| keywords[12].display_name | Computational chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.12419 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.12419 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.12419 |
| locations[1].id | doi:10.48550/arxiv.2201.12419 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.12419 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090160831 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5291-6131 |
| authorships[0].author.display_name | Nathan C. Frey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frey, Nathan C. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043450560 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4598-2808 |
| authorships[1].author.display_name | Vijay Gadepally |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gadepally, Vijay |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039641760 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8450-4262 |
| authorships[2].author.display_name | Bharath Ramsundar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ramsundar, Bharath |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.12419 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FastFlows: Flow-Based Models for Molecular Graph Generation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W3180887190, https://openalex.org/W2320211095, https://openalex.org/W2308164565, https://openalex.org/W2062768126, https://openalex.org/W2171218219, https://openalex.org/W1972271943, https://openalex.org/W3003855012, https://openalex.org/W2150410159, https://openalex.org/W2059230675, https://openalex.org/W2347569454 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.12419 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.12419 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.12419 |
| primary_location.id | pmh:oai:arXiv.org:2201.12419 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.12419 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.12419 |
| publication_date | 2022-01-28 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 71, 80 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.be | 46 |
| abstract_inverted_index.in | 36, 79 |
| abstract_inverted_index.is | 87 |
| abstract_inverted_index.of | 24, 32, 39, 105 |
| abstract_inverted_index.to | 50, 74, 92 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.100 | 26 |
| abstract_inverted_index.Our | 85 |
| abstract_inverted_index.and | 11, 59, 66, 90, 99, 103 |
| abstract_inverted_index.can | 45 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.how | 76 |
| abstract_inverted_index.set | 23 |
| abstract_inverted_index.the | 40 |
| abstract_inverted_index.With | 19 |
| abstract_inverted_index.fast | 101 |
| abstract_inverted_index.only | 25 |
| abstract_inverted_index.than | 94 |
| abstract_inverted_index.that | 14 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.Using | 56 |
| abstract_inverted_index.based | 6 |
| abstract_inverted_index.model | 86 |
| abstract_inverted_index.small | 17, 27 |
| abstract_inverted_index.train | 93 |
| abstract_inverted_index.using | 4 |
| abstract_inverted_index.valid | 34 |
| abstract_inverted_index.easier | 91 |
| abstract_inverted_index.easily | 57 |
| abstract_inverted_index.Because | 38 |
| abstract_inverted_index.applied | 47 |
| abstract_inverted_index.desired | 49 |
| abstract_inverted_index.enables | 100 |
| abstract_inverted_index.filters | 44 |
| abstract_inverted_index.initial | 21 |
| abstract_inverted_index.learned | 60 |
| abstract_inverted_index.metrics | 61 |
| abstract_inverted_index.models, | 7, 98 |
| abstract_inverted_index.perform | 70 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.simpler | 89 |
| abstract_inverted_index.virtual | 82 |
| abstract_inverted_index.Embedded | 9 |
| abstract_inverted_index.Strings, | 10 |
| abstract_inverted_index.context. | 84 |
| abstract_inverted_index.seconds. | 37 |
| abstract_inverted_index.training | 22 |
| abstract_inverted_index.FastFlows | 29, 77 |
| abstract_inverted_index.compounds | 52 |
| abstract_inverted_index.druglike, | 106 |
| abstract_inverted_index.efficient | 41 |
| abstract_inverted_index.eliminate | 51 |
| abstract_inverted_index.framework | 3 |
| abstract_inverted_index.functions | 78 |
| abstract_inverted_index.generates | 16, 30 |
| abstract_inverted_index.moieties. | 55 |
| abstract_inverted_index.molecular | 96 |
| abstract_inverted_index.molecules | 35 |
| abstract_inverted_index.sampling, | 42 |
| abstract_inverted_index.screening | 83 |
| abstract_inverted_index.synthetic | 64, 67 |
| abstract_inverted_index.thousands | 31 |
| abstract_inverted_index.chemically | 33 |
| abstract_inverted_index.computable | 58 |
| abstract_inverted_index.generation | 102 |
| abstract_inverted_index.generative | 97 |
| abstract_inverted_index.molecules, | 28 |
| abstract_inverted_index.molecules. | 18, 108 |
| abstract_inverted_index.complexity, | 68 |
| abstract_inverted_index.demonstrate | 75 |
| abstract_inverted_index.efficiently | 15 |
| abstract_inverted_index.optimization | 13, 73 |
| abstract_inverted_index.substructure | 43 |
| abstract_inverted_index.unreasonable | 54 |
| abstract_inverted_index.druglikeness, | 63 |
| abstract_inverted_index.significantly | 88 |
| abstract_inverted_index.synthesizable | 107 |
| abstract_inverted_index.accessibility, | 65 |
| abstract_inverted_index.autoregressive | 95 |
| abstract_inverted_index.identification | 104 |
| abstract_inverted_index.high-throughput | 81 |
| abstract_inverted_index.multi-objective | 12, 72 |
| abstract_inverted_index.SELF-Referencing | 8 |
| abstract_inverted_index.normalizing-flow | 5 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |