FastPCI: Motion-Structure Guided Fast Point Cloud Frame Interpolation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.19573
Point cloud frame interpolation is a challenging task that involves accurate scene flow estimation across frames and maintaining the geometry structure. Prevailing techniques often rely on pre-trained motion estimators or intensive testing-time optimization, resulting in compromised interpolation accuracy or prolonged inference. This work presents FastPCI that introduces Pyramid Convolution-Transformer architecture for point cloud frame interpolation. Our hybrid Convolution-Transformer improves the local and long-range feature learning, while the pyramid network offers multilevel features and reduces the computation. In addition, FastPCI proposes a unique Dual-Direction Motion-Structure block for more accurate scene flow estimation. Our design is motivated by two facts: (1) accurate scene flow preserves 3D structure, and (2) point cloud at the previous timestep should be reconstructable using reverse motion from future timestep. Extensive experiments show that FastPCI significantly outperforms the state-of-the-art PointINet and NeuralPCI with notable gains (e.g. 26.6% and 18.3% reduction in Chamfer Distance in KITTI), while being more than 10x and 600x faster, respectively. Code is available at https://github.com/genuszty/FastPCI
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.19573
- https://arxiv.org/pdf/2410.19573
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404312200
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404312200Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.19573Digital Object Identifier
- Title
-
FastPCI: Motion-Structure Guided Fast Point Cloud Frame InterpolationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-25Full publication date if available
- Authors
-
Tianyu Zhang, Guocheng Qian, Jin Xie, Jian YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.19573Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.19573Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.19573Direct OA link when available
- Concepts
-
Frame (networking), Interpolation (computer graphics), Point cloud, Motion (physics), Point (geometry), Computer science, Cloud computing, Computer graphics (images), Computer vision, Artificial intelligence, Geometry, Mathematics, Telecommunications, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404312200 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.19573 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.19573 |
| ids.openalex | https://openalex.org/W4404312200 |
| fwci | |
| type | preprint |
| title | FastPCI: Motion-Structure Guided Fast Point Cloud Frame Interpolation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10638 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Optical measurement and interference techniques |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T12153 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3105 |
| topics[2].subfield.display_name | Instrumentation |
| topics[2].display_name | Advanced Optical Sensing Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126042441 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7071871161460876 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[0].display_name | Frame (networking) |
| concepts[1].id | https://openalex.org/C137800194 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6883156299591064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11713455 |
| concepts[1].display_name | Interpolation (computer graphics) |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.658329963684082 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C104114177 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5459151268005371 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[3].display_name | Motion (physics) |
| concepts[4].id | https://openalex.org/C28719098 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5354068279266357 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[4].display_name | Point (geometry) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5004773139953613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C79974875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4616730213165283 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[6].display_name | Cloud computing |
| concepts[7].id | https://openalex.org/C121684516 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3998837471008301 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[7].display_name | Computer graphics (images) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.388676255941391 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3316124975681305 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2722911238670349 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2556397318840027 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.05578470230102539 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/frame |
| keywords[0].score | 0.7071871161460876 |
| keywords[0].display_name | Frame (networking) |
| keywords[1].id | https://openalex.org/keywords/interpolation |
| keywords[1].score | 0.6883156299591064 |
| keywords[1].display_name | Interpolation (computer graphics) |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.658329963684082 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/motion |
| keywords[3].score | 0.5459151268005371 |
| keywords[3].display_name | Motion (physics) |
| keywords[4].id | https://openalex.org/keywords/point |
| keywords[4].score | 0.5354068279266357 |
| keywords[4].display_name | Point (geometry) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5004773139953613 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/cloud-computing |
| keywords[6].score | 0.4616730213165283 |
| keywords[6].display_name | Cloud computing |
| keywords[7].id | https://openalex.org/keywords/computer-graphics |
| keywords[7].score | 0.3998837471008301 |
| keywords[7].display_name | Computer graphics (images) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.388676255941391 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3316124975681305 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.2722911238670349 |
| keywords[10].display_name | Geometry |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2556397318840027 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.05578470230102539 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.19573 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.19573 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.19573 |
| locations[1].id | doi:10.48550/arxiv.2410.19573 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.19573 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100425864 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1969-2855 |
| authorships[0].author.display_name | Tianyu Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Tianyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032922702 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2935-8570 |
| authorships[1].author.display_name | Guocheng Qian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qian, Guocheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089409762 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6978-8834 |
| authorships[2].author.display_name | Jin Xie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xie, Jin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101758436 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6135-6420 |
| authorships[3].author.display_name | Jian Yang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang, Jian |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.19573 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FastPCI: Motion-Structure Guided Fast Point Cloud Frame Interpolation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10638 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Optical measurement and interference techniques |
| related_works | https://openalex.org/W4244478748, https://openalex.org/W4223488648, https://openalex.org/W2134969820, https://openalex.org/W2251605416, https://openalex.org/W1997222214, https://openalex.org/W2560439919, https://openalex.org/W4389340727, https://openalex.org/W3150465815, https://openalex.org/W2802581102, https://openalex.org/W4205786897 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.19573 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.19573 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.19573 |
| primary_location.id | pmh:oai:arXiv.org:2410.19573 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.19573 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.19573 |
| publication_date | 2024-10-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 80 |
| abstract_inverted_index.3D | 103 |
| abstract_inverted_index.In | 76 |
| abstract_inverted_index.at | 109, 159 |
| abstract_inverted_index.be | 114 |
| abstract_inverted_index.by | 95 |
| abstract_inverted_index.in | 34, 142, 145 |
| abstract_inverted_index.is | 4, 93, 157 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.or | 29, 38 |
| abstract_inverted_index.(1) | 98 |
| abstract_inverted_index.(2) | 106 |
| abstract_inverted_index.10x | 151 |
| abstract_inverted_index.Our | 55, 91 |
| abstract_inverted_index.and | 16, 61, 72, 105, 132, 139, 152 |
| abstract_inverted_index.for | 50, 85 |
| abstract_inverted_index.the | 18, 59, 66, 74, 110, 129 |
| abstract_inverted_index.two | 96 |
| abstract_inverted_index.600x | 153 |
| abstract_inverted_index.Code | 156 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.flow | 12, 89, 101 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.more | 86, 149 |
| abstract_inverted_index.rely | 24 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.task | 7 |
| abstract_inverted_index.than | 150 |
| abstract_inverted_index.that | 8, 45, 125 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.work | 42 |
| abstract_inverted_index.(e.g. | 137 |
| abstract_inverted_index.18.3% | 140 |
| abstract_inverted_index.26.6% | 138 |
| abstract_inverted_index.Point | 0 |
| abstract_inverted_index.being | 148 |
| abstract_inverted_index.block | 84 |
| abstract_inverted_index.cloud | 1, 52, 108 |
| abstract_inverted_index.frame | 2, 53 |
| abstract_inverted_index.gains | 136 |
| abstract_inverted_index.local | 60 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.point | 51, 107 |
| abstract_inverted_index.scene | 11, 88, 100 |
| abstract_inverted_index.using | 116 |
| abstract_inverted_index.while | 65, 147 |
| abstract_inverted_index.across | 14 |
| abstract_inverted_index.design | 92 |
| abstract_inverted_index.facts: | 97 |
| abstract_inverted_index.frames | 15 |
| abstract_inverted_index.future | 120 |
| abstract_inverted_index.hybrid | 56 |
| abstract_inverted_index.motion | 27, 118 |
| abstract_inverted_index.offers | 69 |
| abstract_inverted_index.should | 113 |
| abstract_inverted_index.unique | 81 |
| abstract_inverted_index.Chamfer | 143 |
| abstract_inverted_index.FastPCI | 44, 78, 126 |
| abstract_inverted_index.KITTI), | 146 |
| abstract_inverted_index.Pyramid | 47 |
| abstract_inverted_index.faster, | 154 |
| abstract_inverted_index.feature | 63 |
| abstract_inverted_index.network | 68 |
| abstract_inverted_index.notable | 135 |
| abstract_inverted_index.pyramid | 67 |
| abstract_inverted_index.reduces | 73 |
| abstract_inverted_index.reverse | 117 |
| abstract_inverted_index.Distance | 144 |
| abstract_inverted_index.accuracy | 37 |
| abstract_inverted_index.accurate | 10, 87, 99 |
| abstract_inverted_index.features | 71 |
| abstract_inverted_index.geometry | 19 |
| abstract_inverted_index.improves | 58 |
| abstract_inverted_index.involves | 9 |
| abstract_inverted_index.presents | 43 |
| abstract_inverted_index.previous | 111 |
| abstract_inverted_index.proposes | 79 |
| abstract_inverted_index.timestep | 112 |
| abstract_inverted_index.Extensive | 122 |
| abstract_inverted_index.NeuralPCI | 133 |
| abstract_inverted_index.PointINet | 131 |
| abstract_inverted_index.addition, | 77 |
| abstract_inverted_index.available | 158 |
| abstract_inverted_index.intensive | 30 |
| abstract_inverted_index.learning, | 64 |
| abstract_inverted_index.motivated | 94 |
| abstract_inverted_index.preserves | 102 |
| abstract_inverted_index.prolonged | 39 |
| abstract_inverted_index.reduction | 141 |
| abstract_inverted_index.resulting | 33 |
| abstract_inverted_index.timestep. | 121 |
| abstract_inverted_index.Prevailing | 21 |
| abstract_inverted_index.estimation | 13 |
| abstract_inverted_index.estimators | 28 |
| abstract_inverted_index.inference. | 40 |
| abstract_inverted_index.introduces | 46 |
| abstract_inverted_index.long-range | 62 |
| abstract_inverted_index.multilevel | 70 |
| abstract_inverted_index.structure, | 104 |
| abstract_inverted_index.structure. | 20 |
| abstract_inverted_index.techniques | 22 |
| abstract_inverted_index.challenging | 6 |
| abstract_inverted_index.compromised | 35 |
| abstract_inverted_index.estimation. | 90 |
| abstract_inverted_index.experiments | 123 |
| abstract_inverted_index.maintaining | 17 |
| abstract_inverted_index.outperforms | 128 |
| abstract_inverted_index.pre-trained | 26 |
| abstract_inverted_index.architecture | 49 |
| abstract_inverted_index.computation. | 75 |
| abstract_inverted_index.testing-time | 31 |
| abstract_inverted_index.interpolation | 3, 36 |
| abstract_inverted_index.optimization, | 32 |
| abstract_inverted_index.respectively. | 155 |
| abstract_inverted_index.significantly | 127 |
| abstract_inverted_index.Dual-Direction | 82 |
| abstract_inverted_index.interpolation. | 54 |
| abstract_inverted_index.reconstructable | 115 |
| abstract_inverted_index.Motion-Structure | 83 |
| abstract_inverted_index.state-of-the-art | 130 |
| abstract_inverted_index.Convolution-Transformer | 48, 57 |
| abstract_inverted_index.https://github.com/genuszty/FastPCI | 160 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |