Fatigue-related differences in human facial dimensions based on static images Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1088/1757-899x/528/1/012029
Automatic fatigue recognition based on eye and mouth movements has been widely researched and used to detect human fatigue. However, there were only few studies that quantitatively examining fatigue status based on static images. This study was a pilot study that aimed to examine differences in human facial dimension between fresh and fatigue condition, based on photos. 4 photos from 8 subjects were taken, each photo depicted the subject in fresh condition with a neutral expression, fresh condition with a happy expression, fatigue condition with neutral expression, and fatigue condition with happy expression. Each photo was analyzed using Face Reader 7.1 software to detect the coordinates of the points around the eyes and mouth. 10 dimensions around the eyes were calculated for each situation. In neutral expressions, paired t-test with significance value of 0.05 proved that in 8 dimensions, value in fresh conditions were different from ones in fatigue conditions. But these results were not proven in the picture with happy expressions. Although further research is needed, this finding could be a first step for developing the knowledge to detect fatigue based on facial static images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1757-899x/528/1/012029
- OA Status
- diamond
- Cited By
- 4
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2949324781
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2949324781Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1757-899x/528/1/012029Digital Object Identifier
- Title
-
Fatigue-related differences in human facial dimensions based on static imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-01Full publication date if available
- Authors
-
Vivi Triyanti, Yassierli Yassierli, Hardianto IridiastadiList of authors in order
- Landing page
-
https://doi.org/10.1088/1757-899x/528/1/012029Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1757-899x/528/1/012029Direct OA link when available
- Concepts
-
Facial expression, Expression (computer science), Computer vision, Face (sociological concept), Artificial intelligence, Dimension (graph theory), Computer science, Value (mathematics), Psychology, Mathematics, Machine learning, Pure mathematics, Social science, Sociology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2949324781 |
|---|---|
| doi | https://doi.org/10.1088/1757-899x/528/1/012029 |
| ids.doi | https://doi.org/10.1088/1757-899x/528/1/012029 |
| ids.mag | 2949324781 |
| ids.openalex | https://openalex.org/W2949324781 |
| fwci | 0.7007722 |
| type | article |
| title | Fatigue-related differences in human facial dimensions based on static images |
| biblio.issue | 1 |
| biblio.volume | 528 |
| biblio.last_page | 012029 |
| biblio.first_page | 012029 |
| topics[0].id | https://openalex.org/T11373 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Sleep and Work-Related Fatigue |
| topics[1].id | https://openalex.org/T12006 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Ergonomics and Musculoskeletal Disorders |
| topics[2].id | https://openalex.org/T11282 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9491000175476074 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2738 |
| topics[2].subfield.display_name | Psychiatry and Mental health |
| topics[2].display_name | Fibromyalgia and Chronic Fatigue Syndrome Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C195704467 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6750495433807373 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q327968 |
| concepts[0].display_name | Facial expression |
| concepts[1].id | https://openalex.org/C90559484 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6124493479728699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[1].display_name | Expression (computer science) |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5295116901397705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C2779304628 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5274617671966553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[3].display_name | Face (sociological concept) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5024681091308594 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C33676613 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4744763672351837 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[5].display_name | Dimension (graph theory) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.44108280539512634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2776291640 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42727187275886536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[7].display_name | Value (mathematics) |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.41414201259613037 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33682018518447876 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08000728487968445 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C36289849 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[12].display_name | Social science |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/facial-expression |
| keywords[0].score | 0.6750495433807373 |
| keywords[0].display_name | Facial expression |
| keywords[1].id | https://openalex.org/keywords/expression |
| keywords[1].score | 0.6124493479728699 |
| keywords[1].display_name | Expression (computer science) |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5295116901397705 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/face |
| keywords[3].score | 0.5274617671966553 |
| keywords[3].display_name | Face (sociological concept) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5024681091308594 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/dimension |
| keywords[5].score | 0.4744763672351837 |
| keywords[5].display_name | Dimension (graph theory) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.44108280539512634 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/value |
| keywords[7].score | 0.42727187275886536 |
| keywords[7].display_name | Value (mathematics) |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.41414201259613037 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.33682018518447876 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.08000728487968445 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1088/1757-899x/528/1/012029 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210189194 |
| locations[0].source.issn | 1757-8981, 1757-899X |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1757-8981 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IOP Conference Series Materials Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IOP Conference Series: Materials Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.1088/1757-899x/528/1/012029 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5046983719 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1468-8195 |
| authorships[0].author.display_name | Vivi Triyanti |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161010349 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I134635517 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I161010349 |
| authorships[0].institutions[0].ror | https://ror.org/02hd2zk59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161010349 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Atma Jaya Catholic University of Indonesia |
| authorships[0].institutions[1].id | https://openalex.org/I134635517 |
| authorships[0].institutions[1].ror | https://ror.org/00apj8t60 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I134635517 |
| authorships[0].institutions[1].country_code | ID |
| authorships[0].institutions[1].display_name | Bandung Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | V Triyanti |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Industrial Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| authorships[1].author.id | https://openalex.org/A5021539953 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yassierli Yassierli |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134635517 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I134635517 |
| authorships[1].institutions[0].ror | https://ror.org/00apj8t60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I134635517 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Bandung Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Yassierli |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| authorships[2].author.id | https://openalex.org/A5062140542 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5569-827X |
| authorships[2].author.display_name | Hardianto Iridiastadi |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I134635517 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I134635517 |
| authorships[2].institutions[0].ror | https://ror.org/00apj8t60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I134635517 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Bandung Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | H Iridiastadi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1757-899x/528/1/012029 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fatigue-related differences in human facial dimensions based on static images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11373 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Sleep and Work-Related Fatigue |
| related_works | https://openalex.org/W2392243736, https://openalex.org/W86652014, https://openalex.org/W1987895267, https://openalex.org/W3129895999, https://openalex.org/W2328518092, https://openalex.org/W3101249758, https://openalex.org/W2382079200, https://openalex.org/W2350519135, https://openalex.org/W2374091470, https://openalex.org/W2642127892 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1757-899x/528/1/012029 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210189194 |
| best_oa_location.source.issn | 1757-8981, 1757-899X |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1757-8981 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1757-899x/528/1/012029 |
| primary_location.id | doi:10.1088/1757-899x/528/1/012029 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210189194 |
| primary_location.source.issn | 1757-8981, 1757-899X |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1757-8981 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IOP Conference Series Materials Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IOP Conference Series: Materials Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.1088/1757-899x/528/1/012029 |
| publication_date | 2019-05-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2045714005, https://openalex.org/W2019883359, https://openalex.org/W2106605311, https://openalex.org/W1966565414, https://openalex.org/W2585844547, https://openalex.org/W2540183746, https://openalex.org/W2134738818, https://openalex.org/W2036147779, https://openalex.org/W1971318069 |
| referenced_works_count | 9 |
| abstract_inverted_index.4 | 58 |
| abstract_inverted_index.8 | 61, 138 |
| abstract_inverted_index.a | 38, 74, 80, 172 |
| abstract_inverted_index.10 | 115 |
| abstract_inverted_index.In | 125 |
| abstract_inverted_index.be | 171 |
| abstract_inverted_index.in | 46, 70, 137, 141, 148, 157 |
| abstract_inverted_index.is | 166 |
| abstract_inverted_index.of | 107, 133 |
| abstract_inverted_index.on | 5, 32, 56, 183 |
| abstract_inverted_index.to | 16, 43, 103, 179 |
| abstract_inverted_index.7.1 | 101 |
| abstract_inverted_index.But | 151 |
| abstract_inverted_index.and | 7, 14, 52, 88, 113 |
| abstract_inverted_index.eye | 6 |
| abstract_inverted_index.few | 24 |
| abstract_inverted_index.for | 122, 175 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.not | 155 |
| abstract_inverted_index.the | 68, 105, 108, 111, 118, 158, 177 |
| abstract_inverted_index.was | 37, 96 |
| abstract_inverted_index.0.05 | 134 |
| abstract_inverted_index.Each | 94 |
| abstract_inverted_index.Face | 99 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.been | 11 |
| abstract_inverted_index.each | 65, 123 |
| abstract_inverted_index.eyes | 112, 119 |
| abstract_inverted_index.from | 60, 146 |
| abstract_inverted_index.ones | 147 |
| abstract_inverted_index.only | 23 |
| abstract_inverted_index.step | 174 |
| abstract_inverted_index.that | 26, 41, 136 |
| abstract_inverted_index.this | 168 |
| abstract_inverted_index.used | 15 |
| abstract_inverted_index.were | 22, 63, 120, 144, 154 |
| abstract_inverted_index.with | 73, 79, 85, 91, 130, 160 |
| abstract_inverted_index.aimed | 42 |
| abstract_inverted_index.based | 4, 31, 55, 182 |
| abstract_inverted_index.could | 170 |
| abstract_inverted_index.first | 173 |
| abstract_inverted_index.fresh | 51, 71, 77, 142 |
| abstract_inverted_index.happy | 81, 92, 161 |
| abstract_inverted_index.human | 18, 47 |
| abstract_inverted_index.mouth | 8 |
| abstract_inverted_index.photo | 66, 95 |
| abstract_inverted_index.pilot | 39 |
| abstract_inverted_index.study | 36, 40 |
| abstract_inverted_index.there | 21 |
| abstract_inverted_index.these | 152 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.value | 132, 140 |
| abstract_inverted_index.Reader | 100 |
| abstract_inverted_index.around | 110, 117 |
| abstract_inverted_index.detect | 17, 104, 180 |
| abstract_inverted_index.facial | 48, 184 |
| abstract_inverted_index.mouth. | 114 |
| abstract_inverted_index.paired | 128 |
| abstract_inverted_index.photos | 59 |
| abstract_inverted_index.points | 109 |
| abstract_inverted_index.proved | 135 |
| abstract_inverted_index.proven | 156 |
| abstract_inverted_index.static | 33, 185 |
| abstract_inverted_index.status | 30 |
| abstract_inverted_index.t-test | 129 |
| abstract_inverted_index.taken, | 64 |
| abstract_inverted_index.widely | 12 |
| abstract_inverted_index.between | 50 |
| abstract_inverted_index.examine | 44 |
| abstract_inverted_index.fatigue | 2, 29, 53, 83, 89, 149, 181 |
| abstract_inverted_index.finding | 169 |
| abstract_inverted_index.further | 164 |
| abstract_inverted_index.images. | 34, 186 |
| abstract_inverted_index.needed, | 167 |
| abstract_inverted_index.neutral | 75, 86, 126 |
| abstract_inverted_index.photos. | 57 |
| abstract_inverted_index.picture | 159 |
| abstract_inverted_index.results | 153 |
| abstract_inverted_index.studies | 25 |
| abstract_inverted_index.subject | 69 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 163 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.analyzed | 97 |
| abstract_inverted_index.depicted | 67 |
| abstract_inverted_index.fatigue. | 19 |
| abstract_inverted_index.research | 165 |
| abstract_inverted_index.software | 102 |
| abstract_inverted_index.subjects | 62 |
| abstract_inverted_index.Automatic | 1 |
| abstract_inverted_index.condition | 72, 78, 84, 90 |
| abstract_inverted_index.different | 145 |
| abstract_inverted_index.dimension | 49 |
| abstract_inverted_index.examining | 28 |
| abstract_inverted_index.knowledge | 178 |
| abstract_inverted_index.movements | 9 |
| abstract_inverted_index.calculated | 121 |
| abstract_inverted_index.condition, | 54 |
| abstract_inverted_index.conditions | 143 |
| abstract_inverted_index.developing | 176 |
| abstract_inverted_index.dimensions | 116 |
| abstract_inverted_index.researched | 13 |
| abstract_inverted_index.situation. | 124 |
| abstract_inverted_index.conditions. | 150 |
| abstract_inverted_index.coordinates | 106 |
| abstract_inverted_index.differences | 45 |
| abstract_inverted_index.dimensions, | 139 |
| abstract_inverted_index.expression, | 76, 82, 87 |
| abstract_inverted_index.expression. | 93 |
| abstract_inverted_index.recognition | 3 |
| abstract_inverted_index.expressions, | 127 |
| abstract_inverted_index.expressions. | 162 |
| abstract_inverted_index.significance | 131 |
| abstract_inverted_index.quantitatively | 27 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5046983719 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I134635517, https://openalex.org/I161010349 |
| citation_normalized_percentile.value | 0.65122616 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |