Fault Tolerant Neural Control Barrier Functions for Robotic Systems under Sensor Faults and Attacks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.18677
Safety is a fundamental requirement of many robotic systems. Control barrier function (CBF)-based approaches have been proposed to guarantee the safety of robotic systems. However, the effectiveness of these approaches highly relies on the choice of CBFs. Inspired by the universal approximation power of neural networks, there is a growing trend toward representing CBFs using neural networks, leading to the notion of neural CBFs (NCBFs). Current NCBFs, however, are trained and deployed in benign environments, making them ineffective for scenarios where robotic systems experience sensor faults and attacks. In this paper, we study safety-critical control synthesis for robotic systems under sensor faults and attacks. Our main contribution is the development and synthesis of a new class of CBFs that we term fault tolerant neural control barrier function (FT-NCBF). We derive the necessary and sufficient conditions for FT-NCBFs to guarantee safety, and develop a data-driven method to learn FT-NCBFs by minimizing a loss function constructed using the derived conditions. Using the learned FT-NCBF, we synthesize a control input and formally prove the safety guarantee provided by our approach. We demonstrate our proposed approach using two case studies: obstacle avoidance problem for an autonomous mobile robot and spacecraft rendezvous problem, with code available via https://github.com/HongchaoZhang-HZ/FTNCBF.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.18677
- https://arxiv.org/pdf/2402.18677
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401066019
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401066019Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.18677Digital Object Identifier
- Title
-
Fault Tolerant Neural Control Barrier Functions for Robotic Systems under Sensor Faults and AttacksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-28Full publication date if available
- Authors
-
Hongchao Zhang, Luyao Niu, Andrew Clark, Radha PoovendranList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.18677Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.18677Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.18677Direct OA link when available
- Concepts
-
Fault tolerance, Computer science, Fault (geology), Control (management), Distributed computing, Artificial intelligence, Geology, SeismologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401066019 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.18677 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.18677 |
| ids.openalex | https://openalex.org/W4401066019 |
| fwci | |
| type | preprint |
| title | Fault Tolerant Neural Control Barrier Functions for Robotic Systems under Sensor Faults and Attacks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63540848 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5992094278335571 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3140932 |
| concepts[0].display_name | Fault tolerance |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5670655965805054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C175551986 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5310293436050415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[2].display_name | Fault (geology) |
| concepts[3].id | https://openalex.org/C2775924081 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5127823948860168 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[3].display_name | Control (management) |
| concepts[4].id | https://openalex.org/C120314980 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3241198658943176 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[4].display_name | Distributed computing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3048416078090668 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.14058136940002441 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C165205528 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09686759114265442 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[7].display_name | Seismology |
| keywords[0].id | https://openalex.org/keywords/fault-tolerance |
| keywords[0].score | 0.5992094278335571 |
| keywords[0].display_name | Fault tolerance |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5670655965805054 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/fault |
| keywords[2].score | 0.5310293436050415 |
| keywords[2].display_name | Fault (geology) |
| keywords[3].id | https://openalex.org/keywords/control |
| keywords[3].score | 0.5127823948860168 |
| keywords[3].display_name | Control (management) |
| keywords[4].id | https://openalex.org/keywords/distributed-computing |
| keywords[4].score | 0.3241198658943176 |
| keywords[4].display_name | Distributed computing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3048416078090668 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.14058136940002441 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/seismology |
| keywords[7].score | 0.09686759114265442 |
| keywords[7].display_name | Seismology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.18677 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.18677 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.18677 |
| locations[1].id | doi:10.48550/arxiv.2402.18677 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.18677 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072377630 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2716-3267 |
| authorships[0].author.display_name | Hongchao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Hongchao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018806127 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8591-5522 |
| authorships[1].author.display_name | Luyao Niu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Niu, Luyao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004774385 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5868-6186 |
| authorships[2].author.display_name | Andrew Clark |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Clark, Andrew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079723268 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0269-8097 |
| authorships[3].author.display_name | Radha Poovendran |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Poovendran, Radha |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.18677 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fault Tolerant Neural Control Barrier Functions for Robotic Systems under Sensor Faults and Attacks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W2165143308, https://openalex.org/W2319821665, https://openalex.org/W1967767358, https://openalex.org/W1577886464, https://openalex.org/W2144438995, https://openalex.org/W2164896586, https://openalex.org/W1593559483, https://openalex.org/W2108334564, https://openalex.org/W2111125783, https://openalex.org/W2100367016 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.18677 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.18677 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.18677 |
| primary_location.id | pmh:oai:arXiv.org:2402.18677 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.18677 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.18677 |
| publication_date | 2024-02-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 48, 113, 142, 150, 164 |
| abstract_inverted_index.In | 88 |
| abstract_inverted_index.We | 128, 177 |
| abstract_inverted_index.an | 190 |
| abstract_inverted_index.by | 38, 148, 174 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.is | 1, 47, 107 |
| abstract_inverted_index.of | 5, 21, 27, 35, 43, 61, 112, 116 |
| abstract_inverted_index.on | 32 |
| abstract_inverted_index.to | 17, 58, 137, 145 |
| abstract_inverted_index.we | 91, 119, 162 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.and | 70, 86, 102, 110, 132, 140, 167, 194 |
| abstract_inverted_index.are | 68 |
| abstract_inverted_index.for | 78, 96, 135, 189 |
| abstract_inverted_index.new | 114 |
| abstract_inverted_index.our | 175, 179 |
| abstract_inverted_index.the | 19, 25, 33, 39, 59, 108, 130, 155, 159, 170 |
| abstract_inverted_index.two | 183 |
| abstract_inverted_index.via | 201 |
| abstract_inverted_index.CBFs | 53, 63, 117 |
| abstract_inverted_index.been | 15 |
| abstract_inverted_index.case | 184 |
| abstract_inverted_index.code | 199 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.loss | 151 |
| abstract_inverted_index.main | 105 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.term | 120 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.them | 76 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.with | 198 |
| abstract_inverted_index.CBFs. | 36 |
| abstract_inverted_index.Using | 158 |
| abstract_inverted_index.class | 115 |
| abstract_inverted_index.fault | 121 |
| abstract_inverted_index.input | 166 |
| abstract_inverted_index.learn | 146 |
| abstract_inverted_index.power | 42 |
| abstract_inverted_index.prove | 169 |
| abstract_inverted_index.robot | 193 |
| abstract_inverted_index.study | 92 |
| abstract_inverted_index.there | 46 |
| abstract_inverted_index.these | 28 |
| abstract_inverted_index.trend | 50 |
| abstract_inverted_index.under | 99 |
| abstract_inverted_index.using | 54, 154, 182 |
| abstract_inverted_index.where | 80 |
| abstract_inverted_index.NCBFs, | 66 |
| abstract_inverted_index.Safety | 0 |
| abstract_inverted_index.benign | 73 |
| abstract_inverted_index.choice | 34 |
| abstract_inverted_index.derive | 129 |
| abstract_inverted_index.faults | 85, 101 |
| abstract_inverted_index.highly | 30 |
| abstract_inverted_index.making | 75 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.mobile | 192 |
| abstract_inverted_index.neural | 44, 55, 62, 123 |
| abstract_inverted_index.notion | 60 |
| abstract_inverted_index.paper, | 90 |
| abstract_inverted_index.relies | 31 |
| abstract_inverted_index.safety | 20, 171 |
| abstract_inverted_index.sensor | 84, 100 |
| abstract_inverted_index.toward | 51 |
| abstract_inverted_index.Control | 9 |
| abstract_inverted_index.Current | 65 |
| abstract_inverted_index.barrier | 10, 125 |
| abstract_inverted_index.control | 94, 124, 165 |
| abstract_inverted_index.derived | 156 |
| abstract_inverted_index.develop | 141 |
| abstract_inverted_index.growing | 49 |
| abstract_inverted_index.leading | 57 |
| abstract_inverted_index.learned | 160 |
| abstract_inverted_index.problem | 188 |
| abstract_inverted_index.robotic | 7, 22, 81, 97 |
| abstract_inverted_index.safety, | 139 |
| abstract_inverted_index.systems | 82, 98 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.(NCBFs). | 64 |
| abstract_inverted_index.FT-NCBF, | 161 |
| abstract_inverted_index.FT-NCBFs | 136, 147 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Inspired | 37 |
| abstract_inverted_index.approach | 181 |
| abstract_inverted_index.attacks. | 87, 103 |
| abstract_inverted_index.deployed | 71 |
| abstract_inverted_index.formally | 168 |
| abstract_inverted_index.function | 11, 126, 152 |
| abstract_inverted_index.however, | 67 |
| abstract_inverted_index.obstacle | 186 |
| abstract_inverted_index.problem, | 197 |
| abstract_inverted_index.proposed | 16, 180 |
| abstract_inverted_index.provided | 173 |
| abstract_inverted_index.studies: | 185 |
| abstract_inverted_index.systems. | 8, 23 |
| abstract_inverted_index.tolerant | 122 |
| abstract_inverted_index.approach. | 176 |
| abstract_inverted_index.available | 200 |
| abstract_inverted_index.avoidance | 187 |
| abstract_inverted_index.guarantee | 18, 138, 172 |
| abstract_inverted_index.necessary | 131 |
| abstract_inverted_index.networks, | 45, 56 |
| abstract_inverted_index.scenarios | 79 |
| abstract_inverted_index.synthesis | 95, 111 |
| abstract_inverted_index.universal | 40 |
| abstract_inverted_index.(FT-NCBF). | 127 |
| abstract_inverted_index.approaches | 13, 29 |
| abstract_inverted_index.autonomous | 191 |
| abstract_inverted_index.conditions | 134 |
| abstract_inverted_index.experience | 83 |
| abstract_inverted_index.minimizing | 149 |
| abstract_inverted_index.rendezvous | 196 |
| abstract_inverted_index.spacecraft | 195 |
| abstract_inverted_index.sufficient | 133 |
| abstract_inverted_index.synthesize | 163 |
| abstract_inverted_index.(CBF)-based | 12 |
| abstract_inverted_index.conditions. | 157 |
| abstract_inverted_index.constructed | 153 |
| abstract_inverted_index.data-driven | 143 |
| abstract_inverted_index.demonstrate | 178 |
| abstract_inverted_index.development | 109 |
| abstract_inverted_index.fundamental | 3 |
| abstract_inverted_index.ineffective | 77 |
| abstract_inverted_index.requirement | 4 |
| abstract_inverted_index.contribution | 106 |
| abstract_inverted_index.representing | 52 |
| abstract_inverted_index.approximation | 41 |
| abstract_inverted_index.effectiveness | 26 |
| abstract_inverted_index.environments, | 74 |
| abstract_inverted_index.safety-critical | 93 |
| abstract_inverted_index.https://github.com/HongchaoZhang-HZ/FTNCBF. | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |