Fay Identities of Pfaffian Type for Hyperelliptic Curves Article Swipe
Gaëtan Borot
,
Thomas Buc-d’Alché
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.12229
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.12229
We establish identities of Pfaffian type for the theta function associated with twice or half the period matrix of a hyperelliptic curve. They are implied by the large size asymptotic analysis of exact Pfaffian identities for expectation values of ratios of characteristic polynomials in ensembles of orthogonal or quaternionic self-dual random matrices. We show that they amount to identities for the theta function with the period matrix of a hyperelliptic curve, and in this form we reprove them by direct geometric methods.
Related Topics
Concepts
Pfaffian
Hyperelliptic curve
Mathematics
Type (biology)
Hyperelliptic curve cryptography
Pure mathematics
Matrix (chemical analysis)
Theta function
Algebra over a field
Ecology
Materials science
Composite material
Encryption
Operating system
Public-key cryptography
Biology
Elliptic curve cryptography
Computer science
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.12229
- https://arxiv.org/pdf/2312.12229
- OA Status
- green
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390048901
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390048901Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.12229Digital Object Identifier
- Title
-
Fay Identities of Pfaffian Type for Hyperelliptic CurvesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-19Full publication date if available
- Authors
-
Gaëtan Borot, Thomas Buc-d’AlchéList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.12229Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.12229Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.12229Direct OA link when available
- Concepts
-
Pfaffian, Hyperelliptic curve, Mathematics, Type (biology), Hyperelliptic curve cryptography, Pure mathematics, Matrix (chemical analysis), Theta function, Algebra over a field, Ecology, Materials science, Composite material, Encryption, Operating system, Public-key cryptography, Biology, Elliptic curve cryptography, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390048901 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.12229 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.12229 |
| ids.openalex | https://openalex.org/W4390048901 |
| fwci | |
| type | preprint |
| title | Fay Identities of Pfaffian Type for Hyperelliptic Curves |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11716 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Random Matrices and Applications |
| topics[1].id | https://openalex.org/T11680 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Advanced Algebra and Geometry |
| topics[2].id | https://openalex.org/T10948 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9995999932289124 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Advanced Combinatorial Mathematics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2775956649 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9789488315582275 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1189744 |
| concepts[0].display_name | Pfaffian |
| concepts[1].id | https://openalex.org/C11074058 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8392636775970459 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q850110 |
| concepts[1].display_name | Hyperelliptic curve |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7587463855743408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C2777299769 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5825392603874207 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[3].display_name | Type (biology) |
| concepts[4].id | https://openalex.org/C166780011 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5283646583557129 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3005926 |
| concepts[4].display_name | Hyperelliptic curve cryptography |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5041157007217407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C106487976 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4517473876476288 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[6].display_name | Matrix (chemical analysis) |
| concepts[7].id | https://openalex.org/C105546189 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43277212977409363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1154787 |
| concepts[7].display_name | Theta function |
| concepts[8].id | https://openalex.org/C136119220 |
| concepts[8].level | 2 |
| concepts[8].score | 0.1920163631439209 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[8].display_name | Algebra over a field |
| concepts[9].id | https://openalex.org/C18903297 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[9].display_name | Ecology |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C159985019 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[11].display_name | Composite material |
| concepts[12].id | https://openalex.org/C148730421 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141090 |
| concepts[12].display_name | Encryption |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C203062551 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q201339 |
| concepts[14].display_name | Public-key cryptography |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C167615521 |
| concepts[16].level | 4 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1048911 |
| concepts[16].display_name | Elliptic curve cryptography |
| concepts[17].id | https://openalex.org/C41008148 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[17].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/pfaffian |
| keywords[0].score | 0.9789488315582275 |
| keywords[0].display_name | Pfaffian |
| keywords[1].id | https://openalex.org/keywords/hyperelliptic-curve |
| keywords[1].score | 0.8392636775970459 |
| keywords[1].display_name | Hyperelliptic curve |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.7587463855743408 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/type |
| keywords[3].score | 0.5825392603874207 |
| keywords[3].display_name | Type (biology) |
| keywords[4].id | https://openalex.org/keywords/hyperelliptic-curve-cryptography |
| keywords[4].score | 0.5283646583557129 |
| keywords[4].display_name | Hyperelliptic curve cryptography |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.5041157007217407 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/matrix |
| keywords[6].score | 0.4517473876476288 |
| keywords[6].display_name | Matrix (chemical analysis) |
| keywords[7].id | https://openalex.org/keywords/theta-function |
| keywords[7].score | 0.43277212977409363 |
| keywords[7].display_name | Theta function |
| keywords[8].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[8].score | 0.1920163631439209 |
| keywords[8].display_name | Algebra over a field |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.12229 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.12229 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.12229 |
| locations[1].id | doi:10.48550/arxiv.2312.12229 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.12229 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088684979 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Gaëtan Borot |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39343248 |
| authorships[0].affiliations[0].raw_affiliation_string | HU Berlin - Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin (Humboldt-Universität zu Berlin – Unter den Linden 6 – 10099 Berlin – Bundesrepublik Deutschland - Germany) |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I39343248 |
| authorships[0].affiliations[1].raw_affiliation_string | Institut für Mathematik [Humboldt] (Unter den Linden 6 10099 Berlin Germany - Germany) |
| authorships[0].institutions[0].id | https://openalex.org/I39343248 |
| authorships[0].institutions[0].ror | https://ror.org/01hcx6992 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39343248 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Humboldt-Universität zu Berlin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gaëtan Borot |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | HU Berlin - Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin (Humboldt-Universität zu Berlin – Unter den Linden 6 – 10099 Berlin – Bundesrepublik Deutschland - Germany), Institut für Mathematik [Humboldt] (Unter den Linden 6 10099 Berlin Germany - Germany) |
| authorships[1].author.id | https://openalex.org/A5023099572 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Thomas Buc-d’Alché |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1294671590 |
| authorships[1].affiliations[0].raw_affiliation_string | CNRS - Centre National de la Recherche Scientifique (France) |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210160577 |
| authorships[1].affiliations[1].raw_affiliation_string | UMPA-ENSL - Unité de Mathématiques Pures et Appliquées (France) |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I113428412 |
| authorships[1].affiliations[2].raw_affiliation_string | ENS de Lyon - École normale supérieure de Lyon (15 parvis René Descartes - BP 7000 - 69342 Lyon Cedex 07 - France) |
| authorships[1].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[1].institutions[1].id | https://openalex.org/I4210160577 |
| authorships[1].institutions[1].ror | https://ror.org/05n21n105 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I113428412, https://openalex.org/I1294671590, https://openalex.org/I203339264, https://openalex.org/I4210160577 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Unité de Mathématiques Pures et Appliquées |
| authorships[1].institutions[2].id | https://openalex.org/I113428412 |
| authorships[1].institutions[2].ror | https://ror.org/04zmssz18 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I113428412, https://openalex.org/I203339264 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | École Normale Supérieure de Lyon |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Thomas Buc-d'Alché |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CNRS - Centre National de la Recherche Scientifique (France), ENS de Lyon - École normale supérieure de Lyon (15 parvis René Descartes - BP 7000 - 69342 Lyon Cedex 07 - France), UMPA-ENSL - Unité de Mathématiques Pures et Appliquées (France) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.12229 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fay Identities of Pfaffian Type for Hyperelliptic Curves |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11716 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Random Matrices and Applications |
| related_works | https://openalex.org/W2066391825, https://openalex.org/W2349978047, https://openalex.org/W2390281381, https://openalex.org/W3169834755, https://openalex.org/W4390048901, https://openalex.org/W3158394817, https://openalex.org/W2962772631, https://openalex.org/W2296897559, https://openalex.org/W2325994365, https://openalex.org/W570231958 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.12229 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.12229 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.12229 |
| primary_location.id | pmh:oai:arXiv.org:2312.12229 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.12229 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.12229 |
| publication_date | 2023-12-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W653925602, https://openalex.org/W2963526581, https://openalex.org/W1601581883, https://openalex.org/W2088262911, https://openalex.org/W4238712009, https://openalex.org/W1979837636, https://openalex.org/W1540991653, https://openalex.org/W1605265576, https://openalex.org/W2044699574, https://openalex.org/W2041030447, https://openalex.org/W2076641463, https://openalex.org/W4391176995, https://openalex.org/W4286857729, https://openalex.org/W2149106432, https://openalex.org/W1586977863, https://openalex.org/W2008380185, https://openalex.org/W4243186555, https://openalex.org/W1502080410, https://openalex.org/W1988876950, https://openalex.org/W1906797231, https://openalex.org/W3103995510, https://openalex.org/W2051902406, https://openalex.org/W2030336030, https://openalex.org/W4394654691, https://openalex.org/W2158043588, https://openalex.org/W1982744781, https://openalex.org/W2112280696, https://openalex.org/W1509938318, https://openalex.org/W1976456273, https://openalex.org/W4205682100, https://openalex.org/W2088929863 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 19, 68 |
| abstract_inverted_index.We | 0, 52 |
| abstract_inverted_index.by | 25, 78 |
| abstract_inverted_index.in | 43, 72 |
| abstract_inverted_index.of | 3, 18, 31, 38, 40, 45, 67 |
| abstract_inverted_index.or | 13, 47 |
| abstract_inverted_index.to | 57 |
| abstract_inverted_index.we | 75 |
| abstract_inverted_index.and | 71 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.for | 6, 35, 59 |
| abstract_inverted_index.the | 7, 15, 26, 60, 64 |
| abstract_inverted_index.They | 22 |
| abstract_inverted_index.form | 74 |
| abstract_inverted_index.half | 14 |
| abstract_inverted_index.show | 53 |
| abstract_inverted_index.size | 28 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.them | 77 |
| abstract_inverted_index.they | 55 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.type | 5 |
| abstract_inverted_index.with | 11, 63 |
| abstract_inverted_index.exact | 32 |
| abstract_inverted_index.large | 27 |
| abstract_inverted_index.theta | 8, 61 |
| abstract_inverted_index.twice | 12 |
| abstract_inverted_index.amount | 56 |
| abstract_inverted_index.curve, | 70 |
| abstract_inverted_index.curve. | 21 |
| abstract_inverted_index.direct | 79 |
| abstract_inverted_index.matrix | 17, 66 |
| abstract_inverted_index.period | 16, 65 |
| abstract_inverted_index.random | 50 |
| abstract_inverted_index.ratios | 39 |
| abstract_inverted_index.values | 37 |
| abstract_inverted_index.implied | 24 |
| abstract_inverted_index.reprove | 76 |
| abstract_inverted_index.Pfaffian | 4, 33 |
| abstract_inverted_index.analysis | 30 |
| abstract_inverted_index.function | 9, 62 |
| abstract_inverted_index.methods. | 81 |
| abstract_inverted_index.ensembles | 44 |
| abstract_inverted_index.establish | 1 |
| abstract_inverted_index.geometric | 80 |
| abstract_inverted_index.matrices. | 51 |
| abstract_inverted_index.self-dual | 49 |
| abstract_inverted_index.associated | 10 |
| abstract_inverted_index.asymptotic | 29 |
| abstract_inverted_index.identities | 2, 34, 58 |
| abstract_inverted_index.orthogonal | 46 |
| abstract_inverted_index.expectation | 36 |
| abstract_inverted_index.polynomials | 42 |
| abstract_inverted_index.quaternionic | 48 |
| abstract_inverted_index.hyperelliptic | 20, 69 |
| abstract_inverted_index.characteristic | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.22341844 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |