Feasibility of EfficientDet-D3 for Accurate and Efficient Void Detection in GPR Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/infrastructures10060140
The detection of voids in pavement infrastructure is essential for road safety and efficient maintenance. Traditional methods of analyzing ground-penetrating radar (GPR) data are labor-intensive and error-prone. This study presents a novel approach using the EfficientDet-D3 deep learning model for automated void detection in GPR images. The model combines advanced feature extraction and compound scaling to balance accuracy and computational efficiency, making it suitable for real-time applications. A diverse GPR image dataset, including various pavement types and environmental conditions, was curated and preprocessed to improve model generalization. The model was fine-tuned through hyperparameter optimization, achieving a precision of 91.2%, a recall of 87.5%, and an F1-score of 89.3%. It also attained mean Average Precision (mAP) values of 89.7% at IoU 0.5 and 84.3% at IoU 0.75, demonstrating strong localization performance. Comparative analysis with models such as YOLOv8 and Mask R-CNN shows that EfficientDet-D3 offers a superior balance between accuracy and inference speed, with an inference time of 68 ms. This research provides a scalable, efficient solution for pavement void detection, paving the way for integrating deep learning models into pavement management systems to enhance infrastructure sustainability. Future work will focus on model optimization and expanding dataset diversity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/infrastructures10060140
- https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228
- OA Status
- gold
- Cited By
- 1
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411057800
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411057800Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/infrastructures10060140Digital Object Identifier
- Title
-
Feasibility of EfficientDet-D3 for Accurate and Efficient Void Detection in GPR ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-05Full publication date if available
- Authors
-
Sung-Pil Shin, Sang-Yum Lee, Tri Ho Minh LeList of authors in order
- Landing page
-
https://doi.org/10.3390/infrastructures10060140Publisher landing page
- PDF URL
-
https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228Direct OA link when available
- Concepts
-
Ground-penetrating radar, Void (composites), Computer science, Remote sensing, Geology, Artificial intelligence, Materials science, Radar, Composite material, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411057800 |
|---|---|
| doi | https://doi.org/10.3390/infrastructures10060140 |
| ids.doi | https://doi.org/10.3390/infrastructures10060140 |
| ids.openalex | https://openalex.org/W4411057800 |
| fwci | 3.06327829 |
| type | article |
| title | Feasibility of EfficientDet-D3 for Accurate and Efficient Void Detection in GPR Images |
| biblio.issue | 6 |
| biblio.volume | 10 |
| biblio.last_page | 140 |
| biblio.first_page | 140 |
| topics[0].id | https://openalex.org/T11609 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Geophysical Methods and Applications |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9506999850273132 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T10271 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9104999899864197 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | Seismic Imaging and Inversion Techniques |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C71813955 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9220980405807495 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q503560 |
| concepts[0].display_name | Ground-penetrating radar |
| concepts[1].id | https://openalex.org/C2779772531 |
| concepts[1].level | 2 |
| concepts[1].score | 0.610715389251709 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q19689164 |
| concepts[1].display_name | Void (composites) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45473653078079224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.40232470631599426 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C127313418 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3925371766090393 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[4].display_name | Geology |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3250025510787964 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C192562407 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2039172649383545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[6].display_name | Materials science |
| concepts[7].id | https://openalex.org/C554190296 |
| concepts[7].level | 2 |
| concepts[7].score | 0.07120230793952942 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[7].display_name | Radar |
| concepts[8].id | https://openalex.org/C159985019 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06251275539398193 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[8].display_name | Composite material |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/ground-penetrating-radar |
| keywords[0].score | 0.9220980405807495 |
| keywords[0].display_name | Ground-penetrating radar |
| keywords[1].id | https://openalex.org/keywords/void |
| keywords[1].score | 0.610715389251709 |
| keywords[1].display_name | Void (composites) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.45473653078079224 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.40232470631599426 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/geology |
| keywords[4].score | 0.3925371766090393 |
| keywords[4].display_name | Geology |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3250025510787964 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/materials-science |
| keywords[6].score | 0.2039172649383545 |
| keywords[6].display_name | Materials science |
| keywords[7].id | https://openalex.org/keywords/radar |
| keywords[7].score | 0.07120230793952942 |
| keywords[7].display_name | Radar |
| keywords[8].id | https://openalex.org/keywords/composite-material |
| keywords[8].score | 0.06251275539398193 |
| keywords[8].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.3390/infrastructures10060140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210217608 |
| locations[0].source.issn | 2412-3811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2412-3811 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Infrastructures |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Infrastructures |
| locations[0].landing_page_url | https://doi.org/10.3390/infrastructures10060140 |
| locations[1].id | pmh:oai:doaj.org/article:de6a96d5bfe74b6bb6e089c15099f9f9 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Infrastructures, Vol 10, Iss 6, p 140 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/de6a96d5bfe74b6bb6e089c15099f9f9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101379016 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sung-Pil Shin |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3019177047 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyandae-ro, Ilsanseo-gu, Goyang-si 10233, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I3019177047 |
| authorships[0].institutions[0].ror | https://ror.org/035enhp47 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I3019177047 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Korea Institute of Civil Engineering and Building Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sung-Pil Shin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyandae-ro, Ilsanseo-gu, Goyang-si 10233, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5025142114 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5000-5550 |
| authorships[1].author.display_name | Sang-Yum Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I96909044 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Civil Engineering, Induk University, 12 Choansan-ro Nowon-gu, Seoul 01878, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I96909044 |
| authorships[1].institutions[0].ror | https://ror.org/056fjw561 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I96909044 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Induk University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sang-Yum Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Civil Engineering, Induk University, 12 Choansan-ro Nowon-gu, Seoul 01878, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5065264140 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9841-4882 |
| authorships[2].author.display_name | Tri Ho Minh Le |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3020192730 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 70000, Vietnam |
| authorships[2].institutions[0].id | https://openalex.org/I3020192730 |
| authorships[2].institutions[0].ror | https://ror.org/04r9s1v23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3020192730 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Trường ĐH Nguyễn Tất Thành |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tri Ho Minh Le |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 70000, Vietnam |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Feasibility of EfficientDet-D3 for Accurate and Efficient Void Detection in GPR Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11609 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Geophysical Methods and Applications |
| related_works | https://openalex.org/W2946057701, https://openalex.org/W4386931161, https://openalex.org/W2374146176, https://openalex.org/W2065249286, https://openalex.org/W4315471419, https://openalex.org/W2366839571, https://openalex.org/W4223960160, https://openalex.org/W2027762722, https://openalex.org/W2356754952, https://openalex.org/W3090858966 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/infrastructures10060140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210217608 |
| best_oa_location.source.issn | 2412-3811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2412-3811 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Infrastructures |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Infrastructures |
| best_oa_location.landing_page_url | https://doi.org/10.3390/infrastructures10060140 |
| primary_location.id | doi:10.3390/infrastructures10060140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210217608 |
| primary_location.source.issn | 2412-3811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2412-3811 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Infrastructures |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2412-3811/10/6/140/pdf?version=1749132228 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Infrastructures |
| primary_location.landing_page_url | https://doi.org/10.3390/infrastructures10060140 |
| publication_date | 2025-06-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4283794063, https://openalex.org/W2278274781, https://openalex.org/W2669096019, https://openalex.org/W4376631471, https://openalex.org/W4385933123, https://openalex.org/W4387054549, https://openalex.org/W3157271704, https://openalex.org/W3033103461, https://openalex.org/W3007914968, https://openalex.org/W3016270621, https://openalex.org/W2903183786, https://openalex.org/W4404463321, https://openalex.org/W4389994024, https://openalex.org/W4375862278, https://openalex.org/W4312056195, https://openalex.org/W4386076325, https://openalex.org/W4398756379, https://openalex.org/W4225120396, https://openalex.org/W4285238123, https://openalex.org/W2985221802, https://openalex.org/W3035571503, https://openalex.org/W4389766724, https://openalex.org/W4318447268, https://openalex.org/W4380050696, https://openalex.org/W4309118862, https://openalex.org/W3137274716, https://openalex.org/W3034971973, https://openalex.org/W4324359156, https://openalex.org/W4312173741, https://openalex.org/W4311857637, https://openalex.org/W2963150697, https://openalex.org/W3180134609 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 67 |
| abstract_inverted_index.a | 30, 95, 99, 144, 162 |
| abstract_inverted_index.68 | 157 |
| abstract_inverted_index.It | 108 |
| abstract_inverted_index.an | 104, 153 |
| abstract_inverted_index.as | 135 |
| abstract_inverted_index.at | 118, 123 |
| abstract_inverted_index.in | 4, 43 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.of | 2, 17, 97, 101, 106, 116, 156 |
| abstract_inverted_index.on | 190 |
| abstract_inverted_index.to | 55, 83, 182 |
| abstract_inverted_index.0.5 | 120 |
| abstract_inverted_index.GPR | 44, 69 |
| abstract_inverted_index.IoU | 119, 124 |
| abstract_inverted_index.The | 0, 46, 87 |
| abstract_inverted_index.and | 12, 25, 52, 58, 76, 81, 103, 121, 137, 149, 193 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.for | 9, 39, 64, 166, 173 |
| abstract_inverted_index.ms. | 158 |
| abstract_inverted_index.the | 34, 171 |
| abstract_inverted_index.was | 79, 89 |
| abstract_inverted_index.way | 172 |
| abstract_inverted_index.Mask | 138 |
| abstract_inverted_index.This | 27, 159 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.data | 22 |
| abstract_inverted_index.deep | 36, 175 |
| abstract_inverted_index.into | 178 |
| abstract_inverted_index.mean | 111 |
| abstract_inverted_index.road | 10 |
| abstract_inverted_index.such | 134 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.time | 155 |
| abstract_inverted_index.void | 41, 168 |
| abstract_inverted_index.will | 188 |
| abstract_inverted_index.with | 132, 152 |
| abstract_inverted_index.work | 187 |
| abstract_inverted_index.(GPR) | 21 |
| abstract_inverted_index.(mAP) | 114 |
| abstract_inverted_index.0.75, | 125 |
| abstract_inverted_index.84.3% | 122 |
| abstract_inverted_index.89.7% | 117 |
| abstract_inverted_index.R-CNN | 139 |
| abstract_inverted_index.focus | 189 |
| abstract_inverted_index.image | 70 |
| abstract_inverted_index.model | 38, 47, 85, 88, 191 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.radar | 20 |
| abstract_inverted_index.shows | 140 |
| abstract_inverted_index.study | 28 |
| abstract_inverted_index.types | 75 |
| abstract_inverted_index.using | 33 |
| abstract_inverted_index.voids | 3 |
| abstract_inverted_index.87.5%, | 102 |
| abstract_inverted_index.89.3%. | 107 |
| abstract_inverted_index.91.2%, | 98 |
| abstract_inverted_index.Future | 186 |
| abstract_inverted_index.YOLOv8 | 136 |
| abstract_inverted_index.making | 61 |
| abstract_inverted_index.models | 133, 177 |
| abstract_inverted_index.offers | 143 |
| abstract_inverted_index.paving | 170 |
| abstract_inverted_index.recall | 100 |
| abstract_inverted_index.safety | 11 |
| abstract_inverted_index.speed, | 151 |
| abstract_inverted_index.strong | 127 |
| abstract_inverted_index.values | 115 |
| abstract_inverted_index.Average | 112 |
| abstract_inverted_index.balance | 56, 146 |
| abstract_inverted_index.between | 147 |
| abstract_inverted_index.curated | 80 |
| abstract_inverted_index.dataset | 195 |
| abstract_inverted_index.diverse | 68 |
| abstract_inverted_index.enhance | 183 |
| abstract_inverted_index.feature | 50 |
| abstract_inverted_index.images. | 45 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.scaling | 54 |
| abstract_inverted_index.systems | 181 |
| abstract_inverted_index.through | 91 |
| abstract_inverted_index.various | 73 |
| abstract_inverted_index.F1-score | 105 |
| abstract_inverted_index.accuracy | 57, 148 |
| abstract_inverted_index.advanced | 49 |
| abstract_inverted_index.analysis | 131 |
| abstract_inverted_index.approach | 32 |
| abstract_inverted_index.attained | 110 |
| abstract_inverted_index.combines | 48 |
| abstract_inverted_index.compound | 53 |
| abstract_inverted_index.dataset, | 71 |
| abstract_inverted_index.learning | 37, 176 |
| abstract_inverted_index.pavement | 5, 74, 167, 179 |
| abstract_inverted_index.presents | 29 |
| abstract_inverted_index.provides | 161 |
| abstract_inverted_index.research | 160 |
| abstract_inverted_index.solution | 165 |
| abstract_inverted_index.suitable | 63 |
| abstract_inverted_index.superior | 145 |
| abstract_inverted_index.Precision | 113 |
| abstract_inverted_index.achieving | 94 |
| abstract_inverted_index.analyzing | 18 |
| abstract_inverted_index.automated | 40 |
| abstract_inverted_index.detection | 1, 42 |
| abstract_inverted_index.efficient | 13, 164 |
| abstract_inverted_index.essential | 8 |
| abstract_inverted_index.expanding | 194 |
| abstract_inverted_index.including | 72 |
| abstract_inverted_index.inference | 150, 154 |
| abstract_inverted_index.precision | 96 |
| abstract_inverted_index.real-time | 65 |
| abstract_inverted_index.scalable, | 163 |
| abstract_inverted_index.detection, | 169 |
| abstract_inverted_index.diversity. | 196 |
| abstract_inverted_index.extraction | 51 |
| abstract_inverted_index.fine-tuned | 90 |
| abstract_inverted_index.management | 180 |
| abstract_inverted_index.Comparative | 130 |
| abstract_inverted_index.Traditional | 15 |
| abstract_inverted_index.conditions, | 78 |
| abstract_inverted_index.efficiency, | 60 |
| abstract_inverted_index.integrating | 174 |
| abstract_inverted_index.error-prone. | 26 |
| abstract_inverted_index.localization | 128 |
| abstract_inverted_index.maintenance. | 14 |
| abstract_inverted_index.optimization | 192 |
| abstract_inverted_index.performance. | 129 |
| abstract_inverted_index.preprocessed | 82 |
| abstract_inverted_index.applications. | 66 |
| abstract_inverted_index.computational | 59 |
| abstract_inverted_index.demonstrating | 126 |
| abstract_inverted_index.environmental | 77 |
| abstract_inverted_index.optimization, | 93 |
| abstract_inverted_index.hyperparameter | 92 |
| abstract_inverted_index.infrastructure | 6, 184 |
| abstract_inverted_index.EfficientDet-D3 | 35, 142 |
| abstract_inverted_index.generalization. | 86 |
| abstract_inverted_index.labor-intensive | 24 |
| abstract_inverted_index.sustainability. | 185 |
| abstract_inverted_index.ground-penetrating | 19 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.84812838 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |