Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1063/5.0059724
Ice-templated collagen-based tissue-engineering scaffolds are ideal for controlled tissue regeneration since they mimic the micro-environment experienced in vivo. The structure and properties of scaffolds are fine-tuned during fabrication by controlling a number of experimental parameters. However, this parameter space is large and complex, rendering the interpretation of results and selection of optimal parameters to be challenging in practice. This paper investigates the impact of a cross section of this parameter space (drying conditions and solute environment) on the scaffold microstructure. Qualitative assessment revealed the previously unreported impact of drying temperature and pressure on pore wall roughness, and confirmed the influence of collagen concentration, solvent type, and solute addition on pore morphology. For quantitative comparison, we demonstrate the novel application of random forest regression to analyze multi-dimensional biomaterials datasets, and predict microstructural attributes for a scaffold. Using these regression models, we assessed the relative importance of the input experimental parameters on quantitative pore measurements. Collagen concentration and pH were found to be the largest factors in determining pore size and connectivity. Furthermore, circular dichroism peak intensities were also revealed to be a good predictor for structural variations, which is a parameter that has not previously been investigated for its effect on a scaffold microstructure. Thus, this paper demonstrates the potential for predictive models such as random forest regressors to discover novel relationships in biomaterials datasets. These relationships between parameters (such as circular dichroism spectra and pore connectivity) can therefore also be used to identify and design further avenues of investigation within biomaterials.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0059724
- OA Status
- hybrid
- Cited By
- 10
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3200616660
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3200616660Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0059724Digital Object Identifier
- Title
-
Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffoldsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-13Full publication date if available
- Authors
-
Malavika Nair, Ioana Bica, Serena M. Best, Ruth E. CameronList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0059724Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1063/5.0059724Direct OA link when available
- Concepts
-
Random forest, Biological system, Scaffold, Materials science, Microstructure, Tissue engineering, Biomedical engineering, Computer science, Composite material, Machine learning, Database, Biology, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 4, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3200616660 |
|---|---|
| doi | https://doi.org/10.1063/5.0059724 |
| ids.doi | https://doi.org/10.1063/5.0059724 |
| ids.mag | 3200616660 |
| ids.openalex | https://openalex.org/W3200616660 |
| fwci | 1.01004113 |
| type | article |
| title | Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds |
| awards[0].id | https://openalex.org/G2470609473 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/N019938/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G5477836236 |
| awards[1].funder_id | https://openalex.org/F4320306137 |
| awards[1].display_name | |
| awards[1].funder_award_id | OPP1144 |
| awards[1].funder_display_name | Bill and Melinda Gates Foundation |
| awards[2].id | https://openalex.org/G7938300566 |
| awards[2].funder_id | https://openalex.org/F4320338335 |
| awards[2].display_name | |
| awards[2].funder_award_id | 320598 3D-E |
| awards[2].funder_display_name | H2020 European Research Council |
| biblio.issue | 4 |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12085 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2502 |
| topics[0].subfield.display_name | Biomaterials |
| topics[0].display_name | Collagen: Extraction and Characterization |
| topics[1].id | https://openalex.org/T10333 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9818999767303467 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1103 |
| topics[1].subfield.display_name | Animal Science and Zoology |
| topics[1].display_name | Meat and Animal Product Quality |
| topics[2].id | https://openalex.org/T11595 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9751999974250793 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2507 |
| topics[2].subfield.display_name | Polymers and Plastics |
| topics[2].display_name | Textile materials and evaluations |
| funders[0].id | https://openalex.org/F4320306137 |
| funders[0].ror | https://ror.org/0456r8d26 |
| funders[0].display_name | Bill and Melinda Gates Foundation |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| funders[2].id | https://openalex.org/F4320338335 |
| funders[2].ror | https://ror.org/0472cxd90 |
| funders[2].display_name | H2020 European Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C169258074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7548775672912598 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[0].display_name | Random forest |
| concepts[1].id | https://openalex.org/C186060115 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6638970971107483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[1].display_name | Biological system |
| concepts[2].id | https://openalex.org/C89429830 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6373701095581055 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q735710 |
| concepts[2].display_name | Scaffold |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5908204317092896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C87976508 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5179011821746826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1498213 |
| concepts[4].display_name | Microstructure |
| concepts[5].id | https://openalex.org/C49892992 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4810474216938019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1540285 |
| concepts[5].display_name | Tissue engineering |
| concepts[6].id | https://openalex.org/C136229726 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3846895396709442 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[6].display_name | Biomedical engineering |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.37321770191192627 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C159985019 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21845096349716187 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[8].display_name | Composite material |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21013674139976501 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08783259987831116 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/random-forest |
| keywords[0].score | 0.7548775672912598 |
| keywords[0].display_name | Random forest |
| keywords[1].id | https://openalex.org/keywords/biological-system |
| keywords[1].score | 0.6638970971107483 |
| keywords[1].display_name | Biological system |
| keywords[2].id | https://openalex.org/keywords/scaffold |
| keywords[2].score | 0.6373701095581055 |
| keywords[2].display_name | Scaffold |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.5908204317092896 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/microstructure |
| keywords[4].score | 0.5179011821746826 |
| keywords[4].display_name | Microstructure |
| keywords[5].id | https://openalex.org/keywords/tissue-engineering |
| keywords[5].score | 0.4810474216938019 |
| keywords[5].display_name | Tissue engineering |
| keywords[6].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[6].score | 0.3846895396709442 |
| keywords[6].display_name | Biomedical engineering |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.37321770191192627 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/composite-material |
| keywords[8].score | 0.21845096349716187 |
| keywords[8].display_name | Composite material |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.21013674139976501 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.08783259987831116 |
| keywords[10].display_name | Database |
| language | en |
| locations[0].id | doi:10.1063/5.0059724 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210229136 |
| locations[0].source.issn | 1931-9401 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1931-9401 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Physics Reviews |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Physics Reviews |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0059724 |
| locations[1].id | pmh:oai:www.repository.cam.ac.uk:1810/328103 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401776 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Apollo (University of Cambridge) |
| locations[1].source.host_organization | https://openalex.org/I241749 |
| locations[1].source.host_organization_name | University of Cambridge |
| locations[1].source.host_organization_lineage | https://openalex.org/I241749 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.repository.cam.ac.uk/handle/1810/328103 |
| locations[2].id | doi:10.17863/cam.75560 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407050737 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Apollo |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.17863/cam.75560 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5007261815 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5229-8991 |
| authorships[0].author.display_name | Malavika Nair |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Malavika Nair |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5006610847 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5564-0214 |
| authorships[1].author.display_name | Ioana Bica |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149, https://openalex.org/I4210146410 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Engineering Science, University of Oxford 2 , Oxford, United Kingdom |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210128584 |
| authorships[1].affiliations[1].raw_affiliation_string | The Alan Turing Institute 3 , London, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I4210146410 |
| authorships[1].institutions[0].ror | https://ror.org/04j8yhy50 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210146410 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Science Oxford |
| authorships[1].institutions[1].id | https://openalex.org/I4210128584 |
| authorships[1].institutions[1].ror | https://ror.org/035dkdb55 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210128584 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | The Alan Turing Institute |
| authorships[1].institutions[2].id | https://openalex.org/I40120149 |
| authorships[1].institutions[2].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[2].country_code | GB |
| authorships[1].institutions[2].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ioana Bica |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Engineering Science, University of Oxford 2 , Oxford, United Kingdom, The Alan Turing Institute 3 , London, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5079785884 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7866-8607 |
| authorships[2].author.display_name | Serena M. Best |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[2].affiliations[0].raw_affiliation_string | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I241749 |
| authorships[2].institutions[0].ror | https://ror.org/013meh722 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Cambridge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Serena M. Best |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5041541061 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1573-4923 |
| authorships[3].author.display_name | Ruth E. Cameron |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[3].affiliations[0].raw_affiliation_string | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I241749 |
| authorships[3].institutions[0].ror | https://ror.org/013meh722 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Cambridge |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ruth E. Cameron |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge 1 , Cambridge, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1063/5.0059724 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12085 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2502 |
| primary_topic.subfield.display_name | Biomaterials |
| primary_topic.display_name | Collagen: Extraction and Characterization |
| related_works | https://openalex.org/W2096303359, https://openalex.org/W2028744988, https://openalex.org/W3196863326, https://openalex.org/W2769395711, https://openalex.org/W2130814900, https://openalex.org/W3013619998, https://openalex.org/W4312126126, https://openalex.org/W2911445365, https://openalex.org/W2014762318, https://openalex.org/W2359125179 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1063/5.0059724 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210229136 |
| best_oa_location.source.issn | 1931-9401 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1931-9401 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Physics Reviews |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Physics Reviews |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0059724 |
| primary_location.id | doi:10.1063/5.0059724 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210229136 |
| primary_location.source.issn | 1931-9401 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1931-9401 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Physics Reviews |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Physics Reviews |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0059724 |
| publication_date | 2021-10-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2010824264, https://openalex.org/W2055426312, https://openalex.org/W1982701150, https://openalex.org/W2272647150, https://openalex.org/W3027226385, https://openalex.org/W2080719255, https://openalex.org/W2059779956, https://openalex.org/W2034199456, https://openalex.org/W2130419188, https://openalex.org/W2048199422, https://openalex.org/W2081900631, https://openalex.org/W1987205432, https://openalex.org/W1987448247, https://openalex.org/W2055857314, https://openalex.org/W2092477212, https://openalex.org/W2133584799, https://openalex.org/W2079033940, https://openalex.org/W2300709905, https://openalex.org/W2801282188, https://openalex.org/W2044142290, https://openalex.org/W2152063651, https://openalex.org/W2604870469, https://openalex.org/W2022947185, https://openalex.org/W2793555278, https://openalex.org/W2263825730, https://openalex.org/W2044863747, https://openalex.org/W2071941926, https://openalex.org/W2012035409, https://openalex.org/W2517395172, https://openalex.org/W2063757041, https://openalex.org/W2733535563, https://openalex.org/W2018627383, https://openalex.org/W2017399902, https://openalex.org/W2418185590, https://openalex.org/W3016450396, https://openalex.org/W1996411951, https://openalex.org/W1991650061, https://openalex.org/W1964556609, https://openalex.org/W2108379536, https://openalex.org/W2517201556, https://openalex.org/W3108115937, https://openalex.org/W1995673399, https://openalex.org/W2069377486, https://openalex.org/W2009067534, https://openalex.org/W2911964244, https://openalex.org/W3045792597, https://openalex.org/W2891385203, https://openalex.org/W2169281690, https://openalex.org/W1876199299, https://openalex.org/W2096855516, https://openalex.org/W2095322253, https://openalex.org/W2010926366, https://openalex.org/W2559920477, https://openalex.org/W2221173327, https://openalex.org/W1996033641, https://openalex.org/W2079764306, https://openalex.org/W2021911831, https://openalex.org/W2071100665, https://openalex.org/W1964949313, https://openalex.org/W2133798675, https://openalex.org/W2032311924, https://openalex.org/W3201434322 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 30, 64, 133, 180, 188, 200 |
| abstract_inverted_index.as | 213, 229 |
| abstract_inverted_index.be | 54, 160, 179, 239 |
| abstract_inverted_index.by | 28 |
| abstract_inverted_index.in | 16, 56, 164, 221 |
| abstract_inverted_index.is | 39, 187 |
| abstract_inverted_index.of | 22, 32, 46, 50, 63, 67, 87, 100, 119, 144, 247 |
| abstract_inverted_index.on | 76, 92, 108, 149, 199 |
| abstract_inverted_index.pH | 156 |
| abstract_inverted_index.to | 53, 123, 159, 178, 217, 241 |
| abstract_inverted_index.we | 114, 139 |
| abstract_inverted_index.For | 111 |
| abstract_inverted_index.The | 18 |
| abstract_inverted_index.and | 20, 41, 48, 73, 90, 96, 105, 128, 155, 168, 233, 243 |
| abstract_inverted_index.are | 4, 24 |
| abstract_inverted_index.can | 236 |
| abstract_inverted_index.for | 6, 132, 183, 196, 209 |
| abstract_inverted_index.has | 191 |
| abstract_inverted_index.its | 197 |
| abstract_inverted_index.not | 192 |
| abstract_inverted_index.the | 13, 44, 61, 77, 83, 98, 116, 141, 145, 161, 207 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.also | 176, 238 |
| abstract_inverted_index.been | 194 |
| abstract_inverted_index.good | 181 |
| abstract_inverted_index.peak | 173 |
| abstract_inverted_index.pore | 93, 109, 151, 166, 234 |
| abstract_inverted_index.size | 167 |
| abstract_inverted_index.such | 212 |
| abstract_inverted_index.that | 190 |
| abstract_inverted_index.they | 11 |
| abstract_inverted_index.this | 36, 68, 204 |
| abstract_inverted_index.used | 240 |
| abstract_inverted_index.wall | 94 |
| abstract_inverted_index.were | 157, 175 |
| abstract_inverted_index.(such | 228 |
| abstract_inverted_index.These | 224 |
| abstract_inverted_index.Thus, | 203 |
| abstract_inverted_index.Using | 135 |
| abstract_inverted_index.cross | 65 |
| abstract_inverted_index.found | 158 |
| abstract_inverted_index.ideal | 5 |
| abstract_inverted_index.input | 146 |
| abstract_inverted_index.large | 40 |
| abstract_inverted_index.mimic | 12 |
| abstract_inverted_index.novel | 117, 219 |
| abstract_inverted_index.paper | 59, 205 |
| abstract_inverted_index.since | 10 |
| abstract_inverted_index.space | 38, 70 |
| abstract_inverted_index.these | 136 |
| abstract_inverted_index.type, | 104 |
| abstract_inverted_index.vivo. | 17 |
| abstract_inverted_index.which | 186 |
| abstract_inverted_index.design | 244 |
| abstract_inverted_index.drying | 88 |
| abstract_inverted_index.during | 26 |
| abstract_inverted_index.effect | 198 |
| abstract_inverted_index.forest | 121, 215 |
| abstract_inverted_index.impact | 62, 86 |
| abstract_inverted_index.models | 211 |
| abstract_inverted_index.number | 31 |
| abstract_inverted_index.random | 120, 214 |
| abstract_inverted_index.solute | 74, 106 |
| abstract_inverted_index.tissue | 8 |
| abstract_inverted_index.within | 249 |
| abstract_inverted_index.(drying | 71 |
| abstract_inverted_index.analyze | 124 |
| abstract_inverted_index.avenues | 246 |
| abstract_inverted_index.between | 226 |
| abstract_inverted_index.factors | 163 |
| abstract_inverted_index.further | 245 |
| abstract_inverted_index.largest | 162 |
| abstract_inverted_index.models, | 138 |
| abstract_inverted_index.optimal | 51 |
| abstract_inverted_index.predict | 129 |
| abstract_inverted_index.results | 47 |
| abstract_inverted_index.section | 66 |
| abstract_inverted_index.solvent | 103 |
| abstract_inverted_index.spectra | 232 |
| abstract_inverted_index.Collagen | 153 |
| abstract_inverted_index.However, | 35 |
| abstract_inverted_index.addition | 107 |
| abstract_inverted_index.assessed | 140 |
| abstract_inverted_index.circular | 171, 230 |
| abstract_inverted_index.collagen | 101 |
| abstract_inverted_index.complex, | 42 |
| abstract_inverted_index.discover | 218 |
| abstract_inverted_index.identify | 242 |
| abstract_inverted_index.pressure | 91 |
| abstract_inverted_index.relative | 142 |
| abstract_inverted_index.revealed | 82, 177 |
| abstract_inverted_index.scaffold | 78, 201 |
| abstract_inverted_index.confirmed | 97 |
| abstract_inverted_index.datasets, | 127 |
| abstract_inverted_index.datasets. | 223 |
| abstract_inverted_index.dichroism | 172, 231 |
| abstract_inverted_index.influence | 99 |
| abstract_inverted_index.parameter | 37, 69, 189 |
| abstract_inverted_index.potential | 208 |
| abstract_inverted_index.practice. | 57 |
| abstract_inverted_index.predictor | 182 |
| abstract_inverted_index.rendering | 43 |
| abstract_inverted_index.scaffold. | 134 |
| abstract_inverted_index.scaffolds | 3, 23 |
| abstract_inverted_index.selection | 49 |
| abstract_inverted_index.structure | 19 |
| abstract_inverted_index.therefore | 237 |
| abstract_inverted_index.assessment | 81 |
| abstract_inverted_index.attributes | 131 |
| abstract_inverted_index.conditions | 72 |
| abstract_inverted_index.controlled | 7 |
| abstract_inverted_index.fine-tuned | 25 |
| abstract_inverted_index.importance | 143 |
| abstract_inverted_index.parameters | 52, 148, 227 |
| abstract_inverted_index.predictive | 210 |
| abstract_inverted_index.previously | 84, 193 |
| abstract_inverted_index.properties | 21 |
| abstract_inverted_index.regression | 122, 137 |
| abstract_inverted_index.regressors | 216 |
| abstract_inverted_index.roughness, | 95 |
| abstract_inverted_index.structural | 184 |
| abstract_inverted_index.unreported | 85 |
| abstract_inverted_index.Qualitative | 80 |
| abstract_inverted_index.application | 118 |
| abstract_inverted_index.challenging | 55 |
| abstract_inverted_index.comparison, | 113 |
| abstract_inverted_index.controlling | 29 |
| abstract_inverted_index.demonstrate | 115 |
| abstract_inverted_index.determining | 165 |
| abstract_inverted_index.experienced | 15 |
| abstract_inverted_index.fabrication | 27 |
| abstract_inverted_index.intensities | 174 |
| abstract_inverted_index.morphology. | 110 |
| abstract_inverted_index.parameters. | 34 |
| abstract_inverted_index.temperature | 89 |
| abstract_inverted_index.variations, | 185 |
| abstract_inverted_index.Furthermore, | 170 |
| abstract_inverted_index.biomaterials | 126, 222 |
| abstract_inverted_index.demonstrates | 206 |
| abstract_inverted_index.environment) | 75 |
| abstract_inverted_index.experimental | 33, 147 |
| abstract_inverted_index.investigated | 195 |
| abstract_inverted_index.investigates | 60 |
| abstract_inverted_index.quantitative | 112, 150 |
| abstract_inverted_index.regeneration | 9 |
| abstract_inverted_index.Ice-templated | 0 |
| abstract_inverted_index.biomaterials. | 250 |
| abstract_inverted_index.concentration | 154 |
| abstract_inverted_index.connectivity) | 235 |
| abstract_inverted_index.connectivity. | 169 |
| abstract_inverted_index.investigation | 248 |
| abstract_inverted_index.measurements. | 152 |
| abstract_inverted_index.relationships | 220, 225 |
| abstract_inverted_index.collagen-based | 1 |
| abstract_inverted_index.concentration, | 102 |
| abstract_inverted_index.interpretation | 45 |
| abstract_inverted_index.microstructural | 130 |
| abstract_inverted_index.microstructure. | 79, 202 |
| abstract_inverted_index.micro-environment | 14 |
| abstract_inverted_index.multi-dimensional | 125 |
| abstract_inverted_index.tissue-engineering | 2 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5007261815 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I241749 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.6683691 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |