Feature Optimization of Speech Emotion Recognition Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.4236/jbise.2016.910b005
Speech emotion is divided into four categories, Fear, Happy, Neutral and Surprise in this paper. Traditional features and their statistics are generally applied to recognize speech emotion. In order to quantify each feature’s contribution to emotion recogni-tion, a method based on the Back Propagation (BP) neural network is adopted. Then we can obtain the optimal subset of the features. What’s more, two new characteristics of speech emotion, MFCC feature extracted from the fundamental frequency curve (MFCCF0) and amplitude perturbation parameters extracted from the short- time av-erage magnitude curve (APSAM), are added to the selected features. With the Gaus-sian Mixture Model (GMM), we get the highest average recognition rate of the four emotions 82.25%, and the recognition rate of Neutral 90%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4236/jbise.2016.910b005
- http://www.scirp.org/journal/PaperDownload.aspx?paperID=70752
- OA Status
- diamond
- Cited By
- 5
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2523097911
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2523097911Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4236/jbise.2016.910b005Digital Object Identifier
- Title
-
Feature Optimization of Speech Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Chunxia Yu, Ling Xie, Weiping HuList of authors in order
- Landing page
-
https://doi.org/10.4236/jbise.2016.910b005Publisher landing page
- PDF URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=70752Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=70752Direct OA link when available
- Concepts
-
Surprise, Emotion recognition, Mel-frequency cepstrum, Speech recognition, Feature (linguistics), Computer science, Artificial neural network, Pattern recognition (psychology), Artificial intelligence, Feature extraction, Psychology, Communication, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2019: 1, 2018: 1, 2017: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2523097911 |
|---|---|
| doi | https://doi.org/10.4236/jbise.2016.910b005 |
| ids.doi | https://doi.org/10.4236/jbise.2016.910b005 |
| ids.mag | 2523097911 |
| ids.openalex | https://openalex.org/W2523097911 |
| fwci | 0.86085906 |
| type | article |
| title | Feature Optimization of Speech Emotion Recognition |
| biblio.issue | 10 |
| biblio.volume | 09 |
| biblio.last_page | 43 |
| biblio.first_page | 37 |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9832000136375427 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780343955 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8030745983123779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q333173 |
| concepts[0].display_name | Surprise |
| concepts[1].id | https://openalex.org/C2777438025 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7072538733482361 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[1].display_name | Emotion recognition |
| concepts[2].id | https://openalex.org/C151989614 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7059675455093384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q440370 |
| concepts[2].display_name | Mel-frequency cepstrum |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6881979703903198 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6165390610694885 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6072049140930176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5294815301895142 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5118197798728943 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4493374228477478 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C52622490 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3222860097885132 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[9].display_name | Feature extraction |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17347243428230286 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C46312422 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0954732596874237 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11024 |
| concepts[11].display_name | Communication |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0585273802280426 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/surprise |
| keywords[0].score | 0.8030745983123779 |
| keywords[0].display_name | Surprise |
| keywords[1].id | https://openalex.org/keywords/emotion-recognition |
| keywords[1].score | 0.7072538733482361 |
| keywords[1].display_name | Emotion recognition |
| keywords[2].id | https://openalex.org/keywords/mel-frequency-cepstrum |
| keywords[2].score | 0.7059675455093384 |
| keywords[2].display_name | Mel-frequency cepstrum |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.6881979703903198 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.6165390610694885 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6072049140930176 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5294815301895142 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5118197798728943 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4493374228477478 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/feature-extraction |
| keywords[9].score | 0.3222860097885132 |
| keywords[9].display_name | Feature extraction |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.17347243428230286 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/communication |
| keywords[11].score | 0.0954732596874237 |
| keywords[11].display_name | Communication |
| keywords[12].id | https://openalex.org/keywords/linguistics |
| keywords[12].score | 0.0585273802280426 |
| keywords[12].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.4236/jbise.2016.910b005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S185889707 |
| locations[0].source.issn | 1937-6871, 1937-688X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1937-6871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Biomedical Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_name | Scientific Research Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_lineage_names | Scientific Research Publishing |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=70752 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Biomedical Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.4236/jbise.2016.910b005 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101711159 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9696-3095 |
| authorships[0].author.display_name | Chunxia Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I29739308 |
| authorships[0].affiliations[0].raw_affiliation_string | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| authorships[0].institutions[0].id | https://openalex.org/I29739308 |
| authorships[0].institutions[0].ror | https://ror.org/02frt9q65 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I29739308 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangxi Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chunxia Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| authorships[1].author.id | https://openalex.org/A5101528803 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ling Xie |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I29739308 |
| authorships[1].affiliations[0].raw_affiliation_string | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| authorships[1].institutions[0].id | https://openalex.org/I29739308 |
| authorships[1].institutions[0].ror | https://ror.org/02frt9q65 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I29739308 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangxi Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ling Xie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| authorships[2].author.id | https://openalex.org/A5026477717 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3567-6516 |
| authorships[2].author.display_name | Weiping Hu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I29739308 |
| authorships[2].affiliations[0].raw_affiliation_string | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| authorships[2].institutions[0].id | https://openalex.org/I29739308 |
| authorships[2].institutions[0].ror | https://ror.org/02frt9q65 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I29739308 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangxi Normal University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Weiping Hu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | GuangXi Key Lab of Multi-Source Information Mining and Security, GuangXi Normal University, Guilin, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=70752 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Feature Optimization of Speech Emotion Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W2546942002, https://openalex.org/W2497697110, https://openalex.org/W3006133490, https://openalex.org/W50951727, https://openalex.org/W2016461833, https://openalex.org/W2775699880, https://openalex.org/W2062208920, https://openalex.org/W2954046516, https://openalex.org/W2350343535, https://openalex.org/W2170313069 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2017 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4236/jbise.2016.910b005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S185889707 |
| best_oa_location.source.issn | 1937-6871, 1937-688X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1937-6871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Biomedical Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_name | Scientific Research Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_lineage_names | Scientific Research Publishing |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=70752 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Biomedical Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.4236/jbise.2016.910b005 |
| primary_location.id | doi:10.4236/jbise.2016.910b005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S185889707 |
| primary_location.source.issn | 1937-6871, 1937-688X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1937-6871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Biomedical Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_name | Scientific Research Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_lineage_names | Scientific Research Publishing |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=70752 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Biomedical Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.4236/jbise.2016.910b005 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2074788634, https://openalex.org/W1969897088, https://openalex.org/W2181741066, https://openalex.org/W2023937851, https://openalex.org/W4237743494, https://openalex.org/W1594352493, https://openalex.org/W2089683113, https://openalex.org/W1923034539, https://openalex.org/W1587362683, https://openalex.org/W2065441822, https://openalex.org/W4285719527 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 37 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 2, 47 |
| abstract_inverted_index.of | 56, 64, 108, 117 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.to | 23, 29, 34, 91 |
| abstract_inverted_index.we | 50, 101 |
| abstract_inverted_index.and | 10, 17, 76, 113 |
| abstract_inverted_index.are | 20, 89 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.get | 102 |
| abstract_inverted_index.new | 62 |
| abstract_inverted_index.the | 41, 53, 57, 71, 82, 92, 96, 103, 109, 114 |
| abstract_inverted_index.two | 61 |
| abstract_inverted_index.(BP) | 44 |
| abstract_inverted_index.90%. | 119 |
| abstract_inverted_index.Back | 42 |
| abstract_inverted_index.MFCC | 67 |
| abstract_inverted_index.Then | 49 |
| abstract_inverted_index.With | 95 |
| abstract_inverted_index.each | 31 |
| abstract_inverted_index.four | 5, 110 |
| abstract_inverted_index.from | 70, 81 |
| abstract_inverted_index.into | 4 |
| abstract_inverted_index.rate | 107, 116 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.Fear, | 7 |
| abstract_inverted_index.Model | 99 |
| abstract_inverted_index.added | 90 |
| abstract_inverted_index.based | 39 |
| abstract_inverted_index.curve | 74, 87 |
| abstract_inverted_index.more, | 60 |
| abstract_inverted_index.order | 28 |
| abstract_inverted_index.their | 18 |
| abstract_inverted_index.(GMM), | 100 |
| abstract_inverted_index.Happy, | 8 |
| abstract_inverted_index.Speech | 0 |
| abstract_inverted_index.method | 38 |
| abstract_inverted_index.neural | 45 |
| abstract_inverted_index.obtain | 52 |
| abstract_inverted_index.paper. | 14 |
| abstract_inverted_index.short- | 83 |
| abstract_inverted_index.speech | 25, 65 |
| abstract_inverted_index.subset | 55 |
| abstract_inverted_index.82.25%, | 112 |
| abstract_inverted_index.Mixture | 98 |
| abstract_inverted_index.Neutral | 9, 118 |
| abstract_inverted_index.applied | 22 |
| abstract_inverted_index.average | 105 |
| abstract_inverted_index.divided | 3 |
| abstract_inverted_index.emotion | 1, 35 |
| abstract_inverted_index.feature | 68 |
| abstract_inverted_index.highest | 104 |
| abstract_inverted_index.network | 46 |
| abstract_inverted_index.optimal | 54 |
| abstract_inverted_index.(APSAM), | 88 |
| abstract_inverted_index.(MFCCF0) | 75 |
| abstract_inverted_index.Surprise | 11 |
| abstract_inverted_index.What’s | 59 |
| abstract_inverted_index.adopted. | 48 |
| abstract_inverted_index.av-erage | 85 |
| abstract_inverted_index.emotion, | 66 |
| abstract_inverted_index.emotion. | 26 |
| abstract_inverted_index.emotions | 111 |
| abstract_inverted_index.features | 16 |
| abstract_inverted_index.quantify | 30 |
| abstract_inverted_index.selected | 93 |
| abstract_inverted_index.Gaus-sian | 97 |
| abstract_inverted_index.amplitude | 77 |
| abstract_inverted_index.extracted | 69, 80 |
| abstract_inverted_index.features. | 58, 94 |
| abstract_inverted_index.frequency | 73 |
| abstract_inverted_index.generally | 21 |
| abstract_inverted_index.magnitude | 86 |
| abstract_inverted_index.recognize | 24 |
| abstract_inverted_index.parameters | 79 |
| abstract_inverted_index.statistics | 19 |
| abstract_inverted_index.Propagation | 43 |
| abstract_inverted_index.Traditional | 15 |
| abstract_inverted_index.categories, | 6 |
| abstract_inverted_index.feature’s | 32 |
| abstract_inverted_index.fundamental | 72 |
| abstract_inverted_index.recognition | 106, 115 |
| abstract_inverted_index.contribution | 33 |
| abstract_inverted_index.perturbation | 78 |
| abstract_inverted_index.recogni-tion, | 36 |
| abstract_inverted_index.characteristics | 63 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.80691597 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |