Feature selection for constructing datasets toward automated lifecycleassessment for additive manufacturing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.17118/11143/21050
Additive Manufacturing (AM) is considered an innovative technology to fabricate goods with green characteristics. In comparison to conventional manufacturing (CM) approaches, AM technologies have shown impressive results in enhancing sustainability in production systems. Various research has been conducted to assess the environmental impacts of AM based on the well-known life cycle assessment (LCA) framework. However, this approach requires intensive domain knowledge to build the environmental impact model and interpret the impacts of input variances. This knowledge barrier may cause delays and challenges in the selection of the optimal design and process parameters for additively manufactured parts in the product design and planning stages due to the iterative designevaluation process. As such, the research community demands an automated LCA tool for supporting AM toward elevated sustainability. To achieve this ambitious goal, this paper particularly investigates the fundamental question – “What are the key influential parameters that pose an impact on the environmental sustainability of AM?”. A methodological framework for identifying the key influential parameters for AM is proposed. The framework was demonstrated by taking the fused filament fabrication (FFF) process as an example. Based on instantiation, LCA of over 200 AM instances, and correlation analysis, the key influential parameters are identified. Finally, a dataset with the identified features could be constructed. This dataset is expected to establish a common base for scale-up with joint efforts from the AM community.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17118/11143/21050
- https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdf
- OA Status
- gold
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389584917
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389584917Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17118/11143/21050Digital Object Identifier
- Title
-
Feature selection for constructing datasets toward automated lifecycleassessment for additive manufacturingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Ahmed Naser, Fantahum Defersha, Sheng YangList of authors in order
- Landing page
-
https://doi.org/10.17118/11143/21050Publisher landing page
- PDF URL
-
https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdfDirect OA link when available
- Concepts
-
Feature selection, Computer science, Selection (genetic algorithm), Feature (linguistics), Artificial intelligence, Data mining, Pattern recognition (psychology), Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389584917 |
|---|---|
| doi | https://doi.org/10.17118/11143/21050 |
| ids.doi | https://doi.org/10.17118/11143/21050 |
| ids.openalex | https://openalex.org/W4389584917 |
| fwci | 0.0 |
| type | article |
| title | Feature selection for constructing datasets toward automated lifecycleassessment for additive manufacturing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10783 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9909999966621399 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Additive Manufacturing and 3D Printing Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C148483581 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6773608326911926 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[0].display_name | Feature selection |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6571850776672363 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81917197 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6219419240951538 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[2].display_name | Selection (genetic algorithm) |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5230504274368286 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4211135506629944 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4069581925868988 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.34519559144973755 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/feature-selection |
| keywords[0].score | 0.6773608326911926 |
| keywords[0].display_name | Feature selection |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6571850776672363 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/selection |
| keywords[2].score | 0.6219419240951538 |
| keywords[2].display_name | Selection (genetic algorithm) |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5230504274368286 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4211135506629944 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4069581925868988 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.34519559144973755 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.17118/11143/21050 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Progress in Canadian Mechanical Engineering. Volume 6 |
| locations[0].landing_page_url | https://doi.org/10.17118/11143/21050 |
| locations[1].id | pmh:oai:savoirs.usherbrooke.ca:11143/21050 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401321 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Knowledge UdeS (Institutional Deposit of the University of Sherbrooke) |
| locations[1].source.host_organization | https://openalex.org/I135117807 |
| locations[1].source.host_organization_name | Université de Sherbrooke |
| locations[1].source.host_organization_lineage | https://openalex.org/I135117807 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article dans une conférence |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11143/21050 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5001391416 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6334-5925 |
| authorships[0].author.display_name | Ahmed Naser |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I79817857 |
| authorships[0].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Guelph |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmed Z. Naser |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| authorships[1].author.id | https://openalex.org/A5111042914 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fantahum Defersha |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I79817857 |
| authorships[1].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Guelph |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fantahum Defersha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| authorships[2].author.id | https://openalex.org/A5056875120 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6286-2779 |
| authorships[2].author.display_name | Sheng Yang |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I79817857 |
| authorships[2].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Guelph |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sheng Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Engineering, University of Guelph, Guelph (ON), N1G 2W1, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Feature selection for constructing datasets toward automated lifecycleassessment for additive manufacturing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10783 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9909999966621399 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Additive Manufacturing and 3D Printing Technologies |
| related_works | https://openalex.org/W4205762803, https://openalex.org/W2535856026, https://openalex.org/W2265065644, https://openalex.org/W2134699697, https://openalex.org/W3147584709, https://openalex.org/W2322875716, https://openalex.org/W2977677679, https://openalex.org/W2468698815, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.17118/11143/21050 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Progress in Canadian Mechanical Engineering. Volume 6 |
| best_oa_location.landing_page_url | https://doi.org/10.17118/11143/21050 |
| primary_location.id | doi:10.17118/11143/21050 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://savoirs.usherbrooke.ca/bitstream/11143/21050/1/103_CSME-CFDCanada_2023.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Progress in Canadian Mechanical Engineering. Volume 6 |
| primary_location.landing_page_url | https://doi.org/10.17118/11143/21050 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6601977772, https://openalex.org/W6600402904, https://openalex.org/W1545004208, https://openalex.org/W2163743285, https://openalex.org/W2098459033, https://openalex.org/W4200219381, https://openalex.org/W2973104365, https://openalex.org/W2888411961, https://openalex.org/W3164608045, https://openalex.org/W2129635098, https://openalex.org/W2758606443, https://openalex.org/W2027461735, https://openalex.org/W2574375405, https://openalex.org/W1965955670, https://openalex.org/W2197692950, https://openalex.org/W2947788863, https://openalex.org/W2531224885, https://openalex.org/W2570740944, https://openalex.org/W2999135634, https://openalex.org/W2414423160, https://openalex.org/W227520449, https://openalex.org/W4249521427, https://openalex.org/W2904800847, https://openalex.org/W3131064524, https://openalex.org/W2775868263, https://openalex.org/W2018647984, https://openalex.org/W4387524706, https://openalex.org/W2569120233, https://openalex.org/W2190869063, https://openalex.org/W2040806210, https://openalex.org/W2541030742, https://openalex.org/W2330726004, https://openalex.org/W4254519506, https://openalex.org/W4210700443, https://openalex.org/W2152229662, https://openalex.org/W2742516448, https://openalex.org/W2968315319, https://openalex.org/W2049089255, https://openalex.org/W2811064003 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 155 |
| abstract_inverted_index.a | 202, 217 |
| abstract_inverted_index.AM | 22, 45, 122, 165, 190, 227 |
| abstract_inverted_index.As | 110 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.To | 126 |
| abstract_inverted_index.an | 6, 116, 147, 181 |
| abstract_inverted_index.as | 180 |
| abstract_inverted_index.be | 209 |
| abstract_inverted_index.by | 172 |
| abstract_inverted_index.in | 28, 31, 83, 97 |
| abstract_inverted_index.is | 4, 166, 213 |
| abstract_inverted_index.of | 44, 72, 86, 153, 187 |
| abstract_inverted_index.on | 47, 149, 184 |
| abstract_inverted_index.to | 9, 17, 39, 62, 105, 215 |
| abstract_inverted_index.200 | 189 |
| abstract_inverted_index.LCA | 118, 186 |
| abstract_inverted_index.The | 168 |
| abstract_inverted_index.and | 68, 81, 90, 101, 192 |
| abstract_inverted_index.are | 140, 199 |
| abstract_inverted_index.due | 104 |
| abstract_inverted_index.for | 93, 120, 158, 164, 220 |
| abstract_inverted_index.has | 36 |
| abstract_inverted_index.key | 142, 161, 196 |
| abstract_inverted_index.may | 78 |
| abstract_inverted_index.the | 41, 48, 64, 70, 84, 87, 98, 106, 112, 135, 141, 150, 160, 174, 195, 205, 226 |
| abstract_inverted_index.was | 170 |
| abstract_inverted_index.– | 138 |
| abstract_inverted_index.(AM) | 3 |
| abstract_inverted_index.(CM) | 20 |
| abstract_inverted_index.This | 75, 211 |
| abstract_inverted_index.base | 219 |
| abstract_inverted_index.been | 37 |
| abstract_inverted_index.from | 225 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.life | 50 |
| abstract_inverted_index.over | 188 |
| abstract_inverted_index.pose | 146 |
| abstract_inverted_index.that | 145 |
| abstract_inverted_index.this | 56, 128, 131 |
| abstract_inverted_index.tool | 119 |
| abstract_inverted_index.with | 12, 204, 222 |
| abstract_inverted_index.(FFF) | 178 |
| abstract_inverted_index.(LCA) | 53 |
| abstract_inverted_index.Based | 183 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.build | 63 |
| abstract_inverted_index.cause | 79 |
| abstract_inverted_index.could | 208 |
| abstract_inverted_index.cycle | 51 |
| abstract_inverted_index.fused | 175 |
| abstract_inverted_index.goal, | 130 |
| abstract_inverted_index.goods | 11 |
| abstract_inverted_index.green | 13 |
| abstract_inverted_index.input | 73 |
| abstract_inverted_index.joint | 223 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.paper | 132 |
| abstract_inverted_index.parts | 96 |
| abstract_inverted_index.shown | 25 |
| abstract_inverted_index.such, | 111 |
| abstract_inverted_index.assess | 40 |
| abstract_inverted_index.common | 218 |
| abstract_inverted_index.delays | 80 |
| abstract_inverted_index.design | 89, 100 |
| abstract_inverted_index.domain | 60 |
| abstract_inverted_index.impact | 66, 148 |
| abstract_inverted_index.stages | 103 |
| abstract_inverted_index.taking | 173 |
| abstract_inverted_index.toward | 123 |
| abstract_inverted_index.AM?”. | 154 |
| abstract_inverted_index.Various | 34 |
| abstract_inverted_index.achieve | 127 |
| abstract_inverted_index.barrier | 77 |
| abstract_inverted_index.dataset | 203, 212 |
| abstract_inverted_index.demands | 115 |
| abstract_inverted_index.efforts | 224 |
| abstract_inverted_index.impacts | 43, 71 |
| abstract_inverted_index.optimal | 88 |
| abstract_inverted_index.process | 91, 179 |
| abstract_inverted_index.product | 99 |
| abstract_inverted_index.results | 27 |
| abstract_inverted_index.“What | 139 |
| abstract_inverted_index.Additive | 1 |
| abstract_inverted_index.Finally, | 201 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.approach | 57 |
| abstract_inverted_index.elevated | 124 |
| abstract_inverted_index.example. | 182 |
| abstract_inverted_index.expected | 214 |
| abstract_inverted_index.features | 207 |
| abstract_inverted_index.filament | 176 |
| abstract_inverted_index.planning | 102 |
| abstract_inverted_index.process. | 109 |
| abstract_inverted_index.question | 137 |
| abstract_inverted_index.requires | 58 |
| abstract_inverted_index.research | 35, 113 |
| abstract_inverted_index.scale-up | 221 |
| abstract_inverted_index.systems. | 33 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.ambitious | 129 |
| abstract_inverted_index.analysis, | 194 |
| abstract_inverted_index.automated | 117 |
| abstract_inverted_index.community | 114 |
| abstract_inverted_index.conducted | 38 |
| abstract_inverted_index.enhancing | 29 |
| abstract_inverted_index.establish | 216 |
| abstract_inverted_index.fabricate | 10 |
| abstract_inverted_index.framework | 157, 169 |
| abstract_inverted_index.intensive | 59 |
| abstract_inverted_index.interpret | 69 |
| abstract_inverted_index.iterative | 107 |
| abstract_inverted_index.knowledge | 61, 76 |
| abstract_inverted_index.proposed. | 167 |
| abstract_inverted_index.selection | 85 |
| abstract_inverted_index.additively | 94 |
| abstract_inverted_index.assessment | 52 |
| abstract_inverted_index.challenges | 82 |
| abstract_inverted_index.community. | 228 |
| abstract_inverted_index.comparison | 16 |
| abstract_inverted_index.considered | 5 |
| abstract_inverted_index.framework. | 54 |
| abstract_inverted_index.identified | 206 |
| abstract_inverted_index.impressive | 26 |
| abstract_inverted_index.innovative | 7 |
| abstract_inverted_index.instances, | 191 |
| abstract_inverted_index.parameters | 92, 144, 163, 198 |
| abstract_inverted_index.production | 32 |
| abstract_inverted_index.supporting | 121 |
| abstract_inverted_index.technology | 8 |
| abstract_inverted_index.variances. | 74 |
| abstract_inverted_index.well-known | 49 |
| abstract_inverted_index.approaches, | 21 |
| abstract_inverted_index.correlation | 193 |
| abstract_inverted_index.fabrication | 177 |
| abstract_inverted_index.fundamental | 136 |
| abstract_inverted_index.identified. | 200 |
| abstract_inverted_index.identifying | 159 |
| abstract_inverted_index.influential | 143, 162, 197 |
| abstract_inverted_index.constructed. | 210 |
| abstract_inverted_index.conventional | 18 |
| abstract_inverted_index.demonstrated | 171 |
| abstract_inverted_index.investigates | 134 |
| abstract_inverted_index.manufactured | 95 |
| abstract_inverted_index.particularly | 133 |
| abstract_inverted_index.technologies | 23 |
| abstract_inverted_index.Manufacturing | 2 |
| abstract_inverted_index.environmental | 42, 65, 151 |
| abstract_inverted_index.manufacturing | 19 |
| abstract_inverted_index.instantiation, | 185 |
| abstract_inverted_index.methodological | 156 |
| abstract_inverted_index.sustainability | 30, 152 |
| abstract_inverted_index.sustainability. | 125 |
| abstract_inverted_index.characteristics. | 14 |
| abstract_inverted_index.designevaluation | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.20782126 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |