Feature Selection to Address High Dimensionality in Industry 4.0 Multi-Emitter Laser Modules Assembly Lines Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/mis.2024.3416678
Industry 4.0 has increased data depth and breadth in high-tech manufacturing, but high-dimensionality and sparsity persist. High-dimensional space's sparsity makes classical learning and knowledge extraction algorithms ineffective and error-prone. Dimension reduction methods like feature selection seem to address this problem. This study addresses these challenges by conducting a comparative analysis on a real laser assembly industrial case of high dimensions. We explore five standalone methods—NCFS, RReliefF, MRMR, RFE, and Lasso—applied to datasets from two laser modules (d-serie and s-serie). Additionally, two hybrid methods—RReliefF-RFE and MRMR-RFE—are evaluated, broadening the scope of feature selection strategies. Time efficiency prioritizes RReliefF, NCFS and Lasso, while RReliefF-RFE, NCFS and Lasso excel in interpretability, achieving significant predictor reduction without compromising accuracy. The study thus provides insights into the selection of FS methods in a challenging industrial laser assembly setting.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/mis.2024.3416678
- OA Status
- hybrid
- Cited By
- 1
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399881429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399881429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/mis.2024.3416678Digital Object Identifier
- Title
-
Feature Selection to Address High Dimensionality in Industry 4.0 Multi-Emitter Laser Modules Assembly LinesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-21Full publication date if available
- Authors
-
Nikolaos Grigorios Markatos, Alireza Mousavi, Evina Katsou, Giulia Pippione, Roberto PaolettiList of authors in order
- Landing page
-
https://doi.org/10.1109/mis.2024.3416678Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/mis.2024.3416678Direct OA link when available
- Concepts
-
Computer science, Curse of dimensionality, Feature selection, Common emitter, Selection (genetic algorithm), Feature (linguistics), Artificial intelligence, Feature extraction, Dimensionality reduction, Pattern recognition (psychology), Engineering drawing, Electrical engineering, Engineering, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399881429 |
|---|---|
| doi | https://doi.org/10.1109/mis.2024.3416678 |
| ids.doi | https://doi.org/10.1109/mis.2024.3416678 |
| ids.openalex | https://openalex.org/W4399881429 |
| fwci | 0.68104183 |
| type | article |
| title | Feature Selection to Address High Dimensionality in Industry 4.0 Multi-Emitter Laser Modules Assembly Lines |
| biblio.issue | 3 |
| biblio.volume | 40 |
| biblio.last_page | 58 |
| biblio.first_page | 49 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9563000202178955 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7182196974754333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C111030470 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6896477937698364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[1].display_name | Curse of dimensionality |
| concepts[2].id | https://openalex.org/C148483581 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6763721704483032 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[2].display_name | Feature selection |
| concepts[3].id | https://openalex.org/C46918542 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6267805099487305 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1648344 |
| concepts[3].display_name | Common emitter |
| concepts[4].id | https://openalex.org/C81917197 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6080055236816406 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[4].display_name | Selection (genetic algorithm) |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5244300961494446 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5193582773208618 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5124261975288391 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C70518039 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5010602474212646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[8].display_name | Dimensionality reduction |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46337002515792847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C199639397 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3444656431674957 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[10].display_name | Engineering drawing |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18185657262802124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14405182003974915 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7182196974754333 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[1].score | 0.6896477937698364 |
| keywords[1].display_name | Curse of dimensionality |
| keywords[2].id | https://openalex.org/keywords/feature-selection |
| keywords[2].score | 0.6763721704483032 |
| keywords[2].display_name | Feature selection |
| keywords[3].id | https://openalex.org/keywords/common-emitter |
| keywords[3].score | 0.6267805099487305 |
| keywords[3].display_name | Common emitter |
| keywords[4].id | https://openalex.org/keywords/selection |
| keywords[4].score | 0.6080055236816406 |
| keywords[4].display_name | Selection (genetic algorithm) |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5244300961494446 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5193582773208618 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.5124261975288391 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[8].score | 0.5010602474212646 |
| keywords[8].display_name | Dimensionality reduction |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.46337002515792847 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/engineering-drawing |
| keywords[10].score | 0.3444656431674957 |
| keywords[10].display_name | Engineering drawing |
| keywords[11].id | https://openalex.org/keywords/electrical-engineering |
| keywords[11].score | 0.18185657262802124 |
| keywords[11].display_name | Electrical engineering |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.14405182003974915 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/mis.2024.3416678 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S114241109 |
| locations[0].source.issn | 1541-1672, 1941-1294 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1541-1672 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/mis.2024.3416678 |
| locations[1].id | pmh:oai:bura.brunel.ac.uk:2438/29871 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401473 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Brunel University Research Archive (BURA) (Brunel University London) |
| locations[1].source.host_organization | https://openalex.org/I59433898 |
| locations[1].source.host_organization_name | Brunel University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I59433898 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://bura.brunel.ac.uk/handle/2438/29871 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013633560 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3953-6796 |
| authorships[0].author.display_name | Nikolaos Grigorios Markatos |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[0].affiliations[0].raw_affiliation_string | Civil and Environmental Engineering Department, Water Engineering, Imperial College London, London, SW7 2BX, UK |
| authorships[0].institutions[0].id | https://openalex.org/I47508984 |
| authorships[0].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Imperial College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nikolaos G. Markatos |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Civil and Environmental Engineering Department, Water Engineering, Imperial College London, London, SW7 2BX, UK |
| authorships[1].author.id | https://openalex.org/A5003699159 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0360-2712 |
| authorships[1].author.display_name | Alireza Mousavi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge, Greater London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I59433898 |
| authorships[1].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Brunel University of London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alireza Mousavi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge, Greater London, UK |
| authorships[2].author.id | https://openalex.org/A5018508011 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2638-7579 |
| authorships[2].author.display_name | Evina Katsou |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[2].affiliations[0].raw_affiliation_string | Civil and Environmental Engineering Department, Water Engineering, Imperial College London, London, SW7 2BX, UK |
| authorships[2].institutions[0].id | https://openalex.org/I47508984 |
| authorships[2].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Imperial College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Evina Katsou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Civil and Environmental Engineering Department, Water Engineering, Imperial College London, London, SW7 2BX, UK |
| authorships[3].author.id | https://openalex.org/A5065166074 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Giulia Pippione |
| authorships[3].affiliations[0].raw_affiliation_string | Convergent Photonics Italia S.r.l, Torino, Italy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Giulia Pippione |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Convergent Photonics Italia S.r.l, Torino, Italy |
| authorships[4].author.id | https://openalex.org/A5103250802 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2511-5061 |
| authorships[4].author.display_name | Roberto Paoletti |
| authorships[4].affiliations[0].raw_affiliation_string | Convergent Photonics Italia S.r.l, Torino, Italy |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Roberto Paoletti |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Convergent Photonics Italia S.r.l, Torino, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/mis.2024.3416678 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Feature Selection to Address High Dimensionality in Industry 4.0 Multi-Emitter Laser Modules Assembly Lines |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9563000202178955 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W1995622179, https://openalex.org/W1484111231, https://openalex.org/W1552543208, https://openalex.org/W2074396517, https://openalex.org/W2166963679, https://openalex.org/W2187269125, https://openalex.org/W1641615907, https://openalex.org/W20047544, https://openalex.org/W3089231081, https://openalex.org/W2093956241 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/mis.2024.3416678 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S114241109 |
| best_oa_location.source.issn | 1541-1672, 1941-1294 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1541-1672 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1109/mis.2024.3416678 |
| primary_location.id | doi:10.1109/mis.2024.3416678 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S114241109 |
| primary_location.source.issn | 1541-1672, 1941-1294 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1541-1672 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/mis.2024.3416678 |
| publication_date | 2024-06-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2554382158, https://openalex.org/W4321099756, https://openalex.org/W4385618205, https://openalex.org/W4382134272, https://openalex.org/W3155552745, https://openalex.org/W2976786915, https://openalex.org/W4324354432, https://openalex.org/W2167101736, https://openalex.org/W2030363461, https://openalex.org/W1990729297, https://openalex.org/W2899231837, https://openalex.org/W2964278775, https://openalex.org/W6632873059, https://openalex.org/W2153678774, https://openalex.org/W6680962578, https://openalex.org/W2135046866, https://openalex.org/W3086183630, https://openalex.org/W3198908514, https://openalex.org/W4319081673 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 47, 51, 127 |
| abstract_inverted_index.FS | 124 |
| abstract_inverted_index.We | 60 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.in | 8, 106, 126 |
| abstract_inverted_index.of | 57, 89, 123 |
| abstract_inverted_index.on | 50 |
| abstract_inverted_index.to | 36, 70 |
| abstract_inverted_index.4.0 | 1 |
| abstract_inverted_index.The | 115 |
| abstract_inverted_index.and | 6, 13, 22, 27, 68, 77, 83, 98, 103 |
| abstract_inverted_index.but | 11 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 87, 121 |
| abstract_inverted_index.two | 73, 80 |
| abstract_inverted_index.NCFS | 97, 102 |
| abstract_inverted_index.RFE, | 67 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.Time | 93 |
| abstract_inverted_index.case | 56 |
| abstract_inverted_index.data | 4 |
| abstract_inverted_index.five | 62 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.high | 58 |
| abstract_inverted_index.into | 120 |
| abstract_inverted_index.like | 32 |
| abstract_inverted_index.real | 52 |
| abstract_inverted_index.seem | 35 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.thus | 117 |
| abstract_inverted_index.Lasso | 104 |
| abstract_inverted_index.MRMR, | 66 |
| abstract_inverted_index.depth | 5 |
| abstract_inverted_index.excel | 105 |
| abstract_inverted_index.laser | 53, 74, 130 |
| abstract_inverted_index.makes | 19 |
| abstract_inverted_index.scope | 88 |
| abstract_inverted_index.study | 41, 116 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.while | 100 |
| abstract_inverted_index.Lasso, | 99 |
| abstract_inverted_index.hybrid | 81 |
| abstract_inverted_index.address | 37 |
| abstract_inverted_index.breadth | 7 |
| abstract_inverted_index.explore | 61 |
| abstract_inverted_index.feature | 33, 90 |
| abstract_inverted_index.methods | 31, 125 |
| abstract_inverted_index.modules | 75 |
| abstract_inverted_index.space's | 17 |
| abstract_inverted_index.without | 112 |
| abstract_inverted_index.(d-serie | 76 |
| abstract_inverted_index.Industry | 0 |
| abstract_inverted_index.analysis | 49 |
| abstract_inverted_index.assembly | 54, 131 |
| abstract_inverted_index.datasets | 71 |
| abstract_inverted_index.insights | 119 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.persist. | 15 |
| abstract_inverted_index.problem. | 39 |
| abstract_inverted_index.provides | 118 |
| abstract_inverted_index.setting. | 132 |
| abstract_inverted_index.sparsity | 14, 18 |
| abstract_inverted_index.Dimension | 29 |
| abstract_inverted_index.RReliefF, | 65, 96 |
| abstract_inverted_index.accuracy. | 114 |
| abstract_inverted_index.achieving | 108 |
| abstract_inverted_index.addresses | 42 |
| abstract_inverted_index.classical | 20 |
| abstract_inverted_index.high-tech | 9 |
| abstract_inverted_index.increased | 3 |
| abstract_inverted_index.knowledge | 23 |
| abstract_inverted_index.predictor | 110 |
| abstract_inverted_index.reduction | 30, 111 |
| abstract_inverted_index.s-serie). | 78 |
| abstract_inverted_index.selection | 34, 91, 122 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.broadening | 86 |
| abstract_inverted_index.challenges | 44 |
| abstract_inverted_index.conducting | 46 |
| abstract_inverted_index.efficiency | 94 |
| abstract_inverted_index.evaluated, | 85 |
| abstract_inverted_index.extraction | 24 |
| abstract_inverted_index.industrial | 55, 129 |
| abstract_inverted_index.standalone | 63 |
| abstract_inverted_index.challenging | 128 |
| abstract_inverted_index.comparative | 48 |
| abstract_inverted_index.dimensions. | 59 |
| abstract_inverted_index.ineffective | 26 |
| abstract_inverted_index.prioritizes | 95 |
| abstract_inverted_index.significant | 109 |
| abstract_inverted_index.strategies. | 92 |
| abstract_inverted_index.compromising | 113 |
| abstract_inverted_index.error-prone. | 28 |
| abstract_inverted_index.Additionally, | 79 |
| abstract_inverted_index.RReliefF-RFE, | 101 |
| abstract_inverted_index.MRMR-RFE—are | 84 |
| abstract_inverted_index.manufacturing, | 10 |
| abstract_inverted_index.Lasso—applied | 69 |
| abstract_inverted_index.methods—NCFS, | 64 |
| abstract_inverted_index.High-dimensional | 16 |
| abstract_inverted_index.interpretability, | 107 |
| abstract_inverted_index.high-dimensionality | 12 |
| abstract_inverted_index.methods—RReliefF-RFE | 82 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.65774484 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |