FEDERATED LARGE LANGUAGE MODELS IN HEALTHCARE Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31224/5584
The convergence of Federated Learning (FL) and Large Language Models (LLMs) represents a transformative opportunity in healthcare. FL allows decentralized model training across multiple institutions without sharing sensitive data, which is crucial in the privacy-sensitive domain of healthcare. Meanwhile, with their exceptional natural language processing (NLP) capabilities, Large Language Models (LLMs) have demonstrated outstanding potential in healthcare applications such as clinical documentation, decision support, and patient record analysis. Despite growing interest in FL and LLM within the healthcare sector, there remains a notable gap in the literature regarding a holistic examination of these technologies opportunities, challenges, and practical applications in the healthcare context. This systematic review synthesizes cutting-edge research and identifies gaps in recent advances in combining FL and LLMs within healthcare, outlining key opportunities and challenges. This review serves as both a synthesis of current knowledge and a roadmap for future research to enable secure, collaborative, and equitable AI-driven healthcare.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31224/5584
- https://engrxiv.org/preprint/download/5584/9359/7792
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415190693
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415190693Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31224/5584Digital Object Identifier
- Title
-
FEDERATED LARGE LANGUAGE MODELS IN HEALTHCAREWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-14Full publication date if available
- Authors
-
Leon de França Nascimento, Sadi Alwadi, Feras M. Awaysheh, Abbas Cheddad, Albert Y. Zomaya, Mohsen GuizaniList of authors in order
- Landing page
-
https://doi.org/10.31224/5584Publisher landing page
- PDF URL
-
https://engrxiv.org/preprint/download/5584/9359/7792Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://engrxiv.org/preprint/download/5584/9359/7792Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415190693 |
|---|---|
| doi | https://doi.org/10.31224/5584 |
| ids.doi | https://doi.org/10.31224/5584 |
| ids.openalex | https://openalex.org/W4415190693 |
| fwci | 0.0 |
| type | article |
| title | FEDERATED LARGE LANGUAGE MODELS IN HEALTHCARE |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11719 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.43880000710487366 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.31224/5584 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://engrxiv.org/preprint/download/5584/9359/7792 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31224/5584 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015301758 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-2102-0725 |
| authorships[0].author.display_name | Leon de França Nascimento |
| authorships[0].countries | EE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I56085075 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Tartu |
| authorships[0].institutions[0].id | https://openalex.org/I56085075 |
| authorships[0].institutions[0].ror | https://ror.org/03z77qz90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56085075 |
| authorships[0].institutions[0].country_code | EE |
| authorships[0].institutions[0].display_name | University of Tartu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Leon Nascimento |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Tartu |
| authorships[1].author.id | https://openalex.org/A5120002829 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sadi Alwadi |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I52719799 |
| authorships[1].affiliations[0].raw_affiliation_string | Blekinge Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I52719799 |
| authorships[1].institutions[0].ror | https://ror.org/0093a8w51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I52719799 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Blekinge Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sadi Alwadi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Blekinge Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5065801245 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9561-6099 |
| authorships[2].author.display_name | Feras M. Awaysheh |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I90267481 |
| authorships[2].affiliations[0].raw_affiliation_string | Umea University |
| authorships[2].institutions[0].id | https://openalex.org/I90267481 |
| authorships[2].institutions[0].ror | https://ror.org/05kb8h459 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I90267481 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Umeå University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Feras Awaysheh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Umea University |
| authorships[3].author.id | https://openalex.org/A5084177418 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4390-411X |
| authorships[3].author.display_name | Abbas Cheddad |
| authorships[3].countries | EE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I56085075 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Tartu |
| authorships[3].institutions[0].id | https://openalex.org/I56085075 |
| authorships[3].institutions[0].ror | https://ror.org/03z77qz90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I56085075 |
| authorships[3].institutions[0].country_code | EE |
| authorships[3].institutions[0].display_name | University of Tartu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abbas Cheddad |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Tartu |
| authorships[4].author.id | https://openalex.org/A5015993565 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3090-1059 |
| authorships[4].author.display_name | Albert Y. Zomaya |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Sydney |
| authorships[4].institutions[0].id | https://openalex.org/I129604602 |
| authorships[4].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | The University of Sydney |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Albert Zomaya |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Sydney |
| authorships[5].author.id | https://openalex.org/A5057916222 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8972-8094 |
| authorships[5].author.display_name | Mohsen Guizani |
| authorships[5].countries | AE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210113480 |
| authorships[5].affiliations[0].raw_affiliation_string | Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) |
| authorships[5].institutions[0].id | https://openalex.org/I4210113480 |
| authorships[5].institutions[0].ror | https://ror.org/0258gkt32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210113480 |
| authorships[5].institutions[0].country_code | AE |
| authorships[5].institutions[0].display_name | Mohamed bin Zayed University of Artificial Intelligence |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mohsen Guizani |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://engrxiv.org/preprint/download/5584/9359/7792 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | FEDERATED LARGE LANGUAGE MODELS IN HEALTHCARE |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11719 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.43880000710487366 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Data Quality and Management |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31224/5584 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://engrxiv.org/preprint/download/5584/9359/7792 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31224/5584 |
| primary_location.id | doi:10.31224/5584 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://engrxiv.org/preprint/download/5584/9359/7792 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31224/5584 |
| publication_date | 2025-10-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 81, 88, 132, 138 |
| abstract_inverted_index.FL | 17, 72, 117 |
| abstract_inverted_index.as | 59, 130 |
| abstract_inverted_index.in | 15, 32, 55, 71, 84, 99, 112, 115 |
| abstract_inverted_index.is | 30 |
| abstract_inverted_index.of | 2, 36, 91, 134 |
| abstract_inverted_index.to | 143 |
| abstract_inverted_index.LLM | 74 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 6, 64, 73, 96, 109, 118, 125, 137, 147 |
| abstract_inverted_index.for | 140 |
| abstract_inverted_index.gap | 83 |
| abstract_inverted_index.key | 123 |
| abstract_inverted_index.the | 33, 76, 85, 100 |
| abstract_inverted_index.(FL) | 5 |
| abstract_inverted_index.LLMs | 119 |
| abstract_inverted_index.This | 103, 127 |
| abstract_inverted_index.both | 131 |
| abstract_inverted_index.gaps | 111 |
| abstract_inverted_index.have | 51 |
| abstract_inverted_index.such | 58 |
| abstract_inverted_index.with | 39 |
| abstract_inverted_index.(NLP) | 45 |
| abstract_inverted_index.Large | 7, 47 |
| abstract_inverted_index.data, | 28 |
| abstract_inverted_index.model | 20 |
| abstract_inverted_index.their | 40 |
| abstract_inverted_index.there | 79 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.(LLMs) | 10, 50 |
| abstract_inverted_index.Models | 9, 49 |
| abstract_inverted_index.across | 22 |
| abstract_inverted_index.allows | 18 |
| abstract_inverted_index.domain | 35 |
| abstract_inverted_index.enable | 144 |
| abstract_inverted_index.future | 141 |
| abstract_inverted_index.recent | 113 |
| abstract_inverted_index.record | 66 |
| abstract_inverted_index.review | 105, 128 |
| abstract_inverted_index.serves | 129 |
| abstract_inverted_index.within | 75, 120 |
| abstract_inverted_index.Despite | 68 |
| abstract_inverted_index.crucial | 31 |
| abstract_inverted_index.current | 135 |
| abstract_inverted_index.growing | 69 |
| abstract_inverted_index.natural | 42 |
| abstract_inverted_index.notable | 82 |
| abstract_inverted_index.patient | 65 |
| abstract_inverted_index.remains | 80 |
| abstract_inverted_index.roadmap | 139 |
| abstract_inverted_index.sector, | 78 |
| abstract_inverted_index.secure, | 145 |
| abstract_inverted_index.sharing | 26 |
| abstract_inverted_index.without | 25 |
| abstract_inverted_index.Language | 8, 48 |
| abstract_inverted_index.Learning | 4 |
| abstract_inverted_index.advances | 114 |
| abstract_inverted_index.clinical | 60 |
| abstract_inverted_index.context. | 102 |
| abstract_inverted_index.decision | 62 |
| abstract_inverted_index.holistic | 89 |
| abstract_inverted_index.interest | 70 |
| abstract_inverted_index.language | 43 |
| abstract_inverted_index.multiple | 23 |
| abstract_inverted_index.research | 108, 142 |
| abstract_inverted_index.support, | 63 |
| abstract_inverted_index.training | 21 |
| abstract_inverted_index.AI-driven | 149 |
| abstract_inverted_index.Federated | 3 |
| abstract_inverted_index.analysis. | 67 |
| abstract_inverted_index.combining | 116 |
| abstract_inverted_index.equitable | 148 |
| abstract_inverted_index.knowledge | 136 |
| abstract_inverted_index.outlining | 122 |
| abstract_inverted_index.potential | 54 |
| abstract_inverted_index.practical | 97 |
| abstract_inverted_index.regarding | 87 |
| abstract_inverted_index.sensitive | 27 |
| abstract_inverted_index.synthesis | 133 |
| abstract_inverted_index.Meanwhile, | 38 |
| abstract_inverted_index.healthcare | 56, 77, 101 |
| abstract_inverted_index.identifies | 110 |
| abstract_inverted_index.literature | 86 |
| abstract_inverted_index.processing | 44 |
| abstract_inverted_index.represents | 11 |
| abstract_inverted_index.systematic | 104 |
| abstract_inverted_index.challenges, | 95 |
| abstract_inverted_index.challenges. | 126 |
| abstract_inverted_index.convergence | 1 |
| abstract_inverted_index.examination | 90 |
| abstract_inverted_index.exceptional | 41 |
| abstract_inverted_index.healthcare, | 121 |
| abstract_inverted_index.healthcare. | 16, 37, 150 |
| abstract_inverted_index.opportunity | 14 |
| abstract_inverted_index.outstanding | 53 |
| abstract_inverted_index.synthesizes | 106 |
| abstract_inverted_index.applications | 57, 98 |
| abstract_inverted_index.cutting-edge | 107 |
| abstract_inverted_index.demonstrated | 52 |
| abstract_inverted_index.institutions | 24 |
| abstract_inverted_index.technologies | 93 |
| abstract_inverted_index.capabilities, | 46 |
| abstract_inverted_index.decentralized | 19 |
| abstract_inverted_index.opportunities | 124 |
| abstract_inverted_index.collaborative, | 146 |
| abstract_inverted_index.documentation, | 61 |
| abstract_inverted_index.opportunities, | 94 |
| abstract_inverted_index.transformative | 13 |
| abstract_inverted_index.privacy-sensitive | 34 |
| cited_by_percentile_year | |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.56535716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |