Federated Learning with Explainable AI for Malicious Traffic Detection in IoT Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3613459
The rapid proliferation of Internet of Things (IoT) devices has intensified the need for scalable, privacy-preserving, and interpretable intrusion detection systems (IDS). In this work, we propose a novel framework that combines Federated Learning (FL) with Explainable Artificial Intelligence (XAI) to detect malicious traffic across distributed IoT networks without centralizing sensitive data. Our IDS model employs a lightweight deep neural network trained collaboratively using FedAvg. SHAP provides global and local attributions; LIME supplies instance-level attributions complementary to SHAP. Experiments conducted on three benchmark datasets: Edge-IIoT, CIC-IoT2023, and TII-SSRC-23, demonstrated that our approach achieves 99.3%, 99.5% and 99.0% accuracy in binary classification, respectively and 97.2%, 98.0% and 96.5% accuracy in multi-class scenarios, respectively, closely matching centralized models while preserving data locality and data privacy. Moreover, the integrated XAI methods enhance the model’s transparency by identifying key traffic features contributing to each alert. These results establish FL-XAI as a practical, interpretable, and privacy-respecting IDS for real-world IoT deployments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3613459
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414432058
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414432058Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3613459Digital Object Identifier
- Title
-
Federated Learning with Explainable AI for Malicious Traffic Detection in IoT NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Muhammad Ahmad Bilal, Ihtesham Ul Islam, Naima Iltaf, Muhammad Junaid Khan, Muhammad Jaleed KhanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3613459Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3613459Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414432058 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3613459 |
| ids.doi | https://doi.org/10.1109/access.2025.3613459 |
| ids.openalex | https://openalex.org/W4414432058 |
| fwci | 0.0 |
| type | article |
| title | Federated Learning with Explainable AI for Malicious Traffic Detection in IoT Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3613459 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3613459 |
| locations[1].id | pmh:oai:doaj.org/article:0dd9de1db32a4060be429150eb087235 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 173368-173383 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0dd9de1db32a4060be429150eb087235 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012832470 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7673-9309 |
| authorships[0].author.display_name | Muhammad Ahmad Bilal |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad A. Bilal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5050974694 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ihtesham Ul Islam |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I929597975 |
| authorships[1].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | National University of Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ihtesham Ul Islam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[2].author.id | https://openalex.org/A5065396147 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5392-5187 |
| authorships[2].author.display_name | Naima Iltaf |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I929597975 |
| authorships[2].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | National University of Sciences and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Naima Iltaf |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[3].author.id | https://openalex.org/A5102945426 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5912-0504 |
| authorships[3].author.display_name | Muhammad Junaid Khan |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I929597975 |
| authorships[3].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | National University of Sciences and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Junaid Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan |
| authorships[4].author.id | https://openalex.org/A5037898063 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4727-4722 |
| authorships[4].author.display_name | Muhammad Jaleed Khan |
| authorships[4].countries | IE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I188760350 |
| authorships[4].affiliations[0].raw_affiliation_string | Data Science Institute, University of Galway, Ireland |
| authorships[4].institutions[0].id | https://openalex.org/I188760350 |
| authorships[4].institutions[0].ror | https://ror.org/03bea9k73 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I188760350 |
| authorships[4].institutions[0].country_code | IE |
| authorships[4].institutions[0].display_name | Ollscoil na Gaillimhe – University of Galway |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jaleed Khan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Data Science Institute, University of Galway, Ireland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3613459 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Federated Learning with Explainable AI for Malicious Traffic Detection in IoT Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3613459 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3613459 |
| primary_location.id | doi:10.1109/access.2025.3613459 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3613459 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 56, 146 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 98, 108 |
| abstract_inverted_index.of | 3, 5 |
| abstract_inverted_index.on | 80 |
| abstract_inverted_index.to | 40, 76, 138 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.IDS | 53, 151 |
| abstract_inverted_index.IoT | 46, 154 |
| abstract_inverted_index.Our | 52 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.XAI | 126 |
| abstract_inverted_index.and | 16, 68, 86, 95, 102, 105, 120, 149 |
| abstract_inverted_index.for | 13, 152 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.key | 134 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.the | 11, 124, 129 |
| abstract_inverted_index.(FL) | 34 |
| abstract_inverted_index.LIME | 71 |
| abstract_inverted_index.SHAP | 65 |
| abstract_inverted_index.data | 118, 121 |
| abstract_inverted_index.deep | 58 |
| abstract_inverted_index.each | 139 |
| abstract_inverted_index.need | 12 |
| abstract_inverted_index.that | 30, 89 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.with | 35 |
| abstract_inverted_index.(IoT) | 7 |
| abstract_inverted_index.(XAI) | 39 |
| abstract_inverted_index.96.5% | 106 |
| abstract_inverted_index.98.0% | 104 |
| abstract_inverted_index.99.0% | 96 |
| abstract_inverted_index.99.5% | 94 |
| abstract_inverted_index.SHAP. | 77 |
| abstract_inverted_index.These | 141 |
| abstract_inverted_index.data. | 51 |
| abstract_inverted_index.local | 69 |
| abstract_inverted_index.model | 54 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.three | 81 |
| abstract_inverted_index.using | 63 |
| abstract_inverted_index.while | 116 |
| abstract_inverted_index.work, | 24 |
| abstract_inverted_index.(IDS). | 21 |
| abstract_inverted_index.97.2%, | 103 |
| abstract_inverted_index.99.3%, | 93 |
| abstract_inverted_index.FL-XAI | 144 |
| abstract_inverted_index.Things | 6 |
| abstract_inverted_index.across | 44 |
| abstract_inverted_index.alert. | 140 |
| abstract_inverted_index.binary | 99 |
| abstract_inverted_index.detect | 41 |
| abstract_inverted_index.global | 67 |
| abstract_inverted_index.models | 115 |
| abstract_inverted_index.neural | 59 |
| abstract_inverted_index.FedAvg. | 64 |
| abstract_inverted_index.closely | 112 |
| abstract_inverted_index.devices | 8 |
| abstract_inverted_index.employs | 55 |
| abstract_inverted_index.enhance | 128 |
| abstract_inverted_index.methods | 127 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.systems | 20 |
| abstract_inverted_index.traffic | 43, 135 |
| abstract_inverted_index.trained | 61 |
| abstract_inverted_index.without | 48 |
| abstract_inverted_index.Internet | 4 |
| abstract_inverted_index.Learning | 33 |
| abstract_inverted_index.accuracy | 97, 107 |
| abstract_inverted_index.achieves | 92 |
| abstract_inverted_index.approach | 91 |
| abstract_inverted_index.combines | 31 |
| abstract_inverted_index.features | 136 |
| abstract_inverted_index.locality | 119 |
| abstract_inverted_index.matching | 113 |
| abstract_inverted_index.networks | 47 |
| abstract_inverted_index.privacy. | 122 |
| abstract_inverted_index.provides | 66 |
| abstract_inverted_index.supplies | 72 |
| abstract_inverted_index.Federated | 32 |
| abstract_inverted_index.Moreover, | 123 |
| abstract_inverted_index.benchmark | 82 |
| abstract_inverted_index.conducted | 79 |
| abstract_inverted_index.datasets: | 83 |
| abstract_inverted_index.detection | 19 |
| abstract_inverted_index.establish | 143 |
| abstract_inverted_index.framework | 29 |
| abstract_inverted_index.intrusion | 18 |
| abstract_inverted_index.malicious | 42 |
| abstract_inverted_index.scalable, | 14 |
| abstract_inverted_index.sensitive | 50 |
| abstract_inverted_index.Artificial | 37 |
| abstract_inverted_index.Edge-IIoT, | 84 |
| abstract_inverted_index.integrated | 125 |
| abstract_inverted_index.practical, | 147 |
| abstract_inverted_index.preserving | 117 |
| abstract_inverted_index.real-world | 153 |
| abstract_inverted_index.scenarios, | 110 |
| abstract_inverted_index.Experiments | 78 |
| abstract_inverted_index.Explainable | 36 |
| abstract_inverted_index.centralized | 114 |
| abstract_inverted_index.distributed | 45 |
| abstract_inverted_index.identifying | 133 |
| abstract_inverted_index.intensified | 10 |
| abstract_inverted_index.lightweight | 57 |
| abstract_inverted_index.multi-class | 109 |
| abstract_inverted_index.CIC-IoT2023, | 85 |
| abstract_inverted_index.Intelligence | 38 |
| abstract_inverted_index.TII-SSRC-23, | 87 |
| abstract_inverted_index.attributions | 74 |
| abstract_inverted_index.centralizing | 49 |
| abstract_inverted_index.contributing | 137 |
| abstract_inverted_index.demonstrated | 88 |
| abstract_inverted_index.deployments. | 155 |
| abstract_inverted_index.respectively | 101 |
| abstract_inverted_index.transparency | 131 |
| abstract_inverted_index.attributions; | 70 |
| abstract_inverted_index.complementary | 75 |
| abstract_inverted_index.interpretable | 17 |
| abstract_inverted_index.proliferation | 2 |
| abstract_inverted_index.respectively, | 111 |
| abstract_inverted_index.instance-level | 73 |
| abstract_inverted_index.interpretable, | 148 |
| abstract_inverted_index.model’s | 130 |
| abstract_inverted_index.classification, | 100 |
| abstract_inverted_index.collaboratively | 62 |
| abstract_inverted_index.privacy-respecting | 150 |
| abstract_inverted_index.privacy-preserving, | 15 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.51720453 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |