Federated reinforcement learning based task offloading approach for MEC-assisted WBAN-enabled IoMT Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.aej.2023.11.041
The exponential proliferation of wearable medical apparatus and healthcare information within the framework of the Internet of Medical Things (IoMT) introduces supplementary complexities pertaining to the elevated Quality of Service (QoS) of intelligent healthcare in the forthcoming 6G era. Healthcare services and applications need ultra-reliable data transfer and processing with ultra-low latency and energy usage. Wireless Body Area Network (WBAN) and Mobile Edge Computing (MEC) technologies enabled IoMT to handle large amounts of data sensing, transmission, and processing while maintaining good QoS. Traditional frame aggregation (FA) systems in WBAN, on the other hand, create an excessive number of control frames during data transmission, resulting in significant latency and energy consumption, as well as a lack of flexibility. A Federated Reinforcement Learning (FRL) based TO Approach is recommended in this research. In the beginning, different types of service-related information were separated into queues with equal QoS needs. The duration of the FA was then automatically determined by the aggregation vertex based on energy consumption, latency, and throughput using FRL. Finally, based on the existing status, the amount of tasks offloaded was determined. The simulation results demonstrate that, as compared to the baseline schemes, the suggested FRLTO efficiently reduces energy consumption and latency while enhancing throughput and total WBAN utilization. Numerical results show that the proposed scheme improves the throughput by 37.06% and reduced the energy consumption by around 69.84% and time delay by about 6.23%, as compared to the state-of-the-art existing baseline schemes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aej.2023.11.041
- OA Status
- gold
- Cited By
- 24
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389034321
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389034321Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aej.2023.11.041Digital Object Identifier
- Title
-
Federated reinforcement learning based task offloading approach for MEC-assisted WBAN-enabled IoMTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-26Full publication date if available
- Authors
-
Prakhar Consul, Ishan Budhiraja, Ruchika Arora, Sahil Garg, Bong Jun Choi, M. Shamim HossainList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aej.2023.11.041Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aej.2023.11.041Direct OA link when available
- Concepts
-
Computer science, Energy consumption, Reinforcement learning, Quality of service, Body area network, Latency (audio), Computer network, Efficient energy use, Throughput, Distributed computing, Wireless, Wireless sensor network, Artificial intelligence, Engineering, Electrical engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 12Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389034321 |
|---|---|
| doi | https://doi.org/10.1016/j.aej.2023.11.041 |
| ids.doi | https://doi.org/10.1016/j.aej.2023.11.041 |
| ids.openalex | https://openalex.org/W4389034321 |
| fwci | 10.54925501 |
| type | article |
| title | Federated reinforcement learning based task offloading approach for MEC-assisted WBAN-enabled IoMT |
| awards[0].id | https://openalex.org/G6030954327 |
| awards[0].funder_id | https://openalex.org/F4320322030 |
| awards[0].display_name | |
| awards[0].funder_award_id | NRF-2022R1A2C4001270 |
| awards[0].funder_display_name | Ministry of Science, ICT and Future Planning |
| awards[1].id | https://openalex.org/G3088047711 |
| awards[1].funder_id | https://openalex.org/F4320322030 |
| awards[1].display_name | |
| awards[1].funder_award_id | RSP2023R32 |
| awards[1].funder_display_name | Ministry of Science, ICT and Future Planning |
| awards[2].id | https://openalex.org/G3086708167 |
| awards[2].funder_id | https://openalex.org/F4320322030 |
| awards[2].display_name | |
| awards[2].funder_award_id | IITP-2023-RS-2022-00156360 |
| awards[2].funder_display_name | Ministry of Science, ICT and Future Planning |
| biblio.issue | |
| biblio.volume | 86 |
| biblio.last_page | 66 |
| biblio.first_page | 56 |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T11932 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Wireless Body Area Networks |
| topics[2].id | https://openalex.org/T11458 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Wireless Communication Technologies |
| funders[0].id | https://openalex.org/F4320321145 |
| funders[0].ror | https://ror.org/02f81g417 |
| funders[0].display_name | King Saud University |
| funders[1].id | https://openalex.org/F4320322030 |
| funders[1].ror | https://ror.org/032e49973 |
| funders[1].display_name | Ministry of Science, ICT and Future Planning |
| is_xpac | False |
| apc_list.value | 860 |
| apc_list.currency | USD |
| apc_list.value_usd | 860 |
| apc_paid.value | 860 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 860 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7712960243225098 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780165032 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6507586240768433 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[1].display_name | Energy consumption |
| concepts[2].id | https://openalex.org/C97541855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5819693207740784 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[2].display_name | Reinforcement learning |
| concepts[3].id | https://openalex.org/C5119721 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5776263475418091 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[3].display_name | Quality of service |
| concepts[4].id | https://openalex.org/C88737568 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5688420534133911 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q890056 |
| concepts[4].display_name | Body area network |
| concepts[5].id | https://openalex.org/C82876162 |
| concepts[5].level | 2 |
| concepts[5].score | 0.549938976764679 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[5].display_name | Latency (audio) |
| concepts[6].id | https://openalex.org/C31258907 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5350704193115234 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[6].display_name | Computer network |
| concepts[7].id | https://openalex.org/C2742236 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4491894841194153 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q924713 |
| concepts[7].display_name | Efficient energy use |
| concepts[8].id | https://openalex.org/C157764524 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4451104700565338 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[8].display_name | Throughput |
| concepts[9].id | https://openalex.org/C120314980 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3832918405532837 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[9].display_name | Distributed computing |
| concepts[10].id | https://openalex.org/C555944384 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3022860884666443 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[10].display_name | Wireless |
| concepts[11].id | https://openalex.org/C24590314 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2944451570510864 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[11].display_name | Wireless sensor network |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12264454364776611 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10425648093223572 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7712960243225098 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/energy-consumption |
| keywords[1].score | 0.6507586240768433 |
| keywords[1].display_name | Energy consumption |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.5819693207740784 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/quality-of-service |
| keywords[3].score | 0.5776263475418091 |
| keywords[3].display_name | Quality of service |
| keywords[4].id | https://openalex.org/keywords/body-area-network |
| keywords[4].score | 0.5688420534133911 |
| keywords[4].display_name | Body area network |
| keywords[5].id | https://openalex.org/keywords/latency |
| keywords[5].score | 0.549938976764679 |
| keywords[5].display_name | Latency (audio) |
| keywords[6].id | https://openalex.org/keywords/computer-network |
| keywords[6].score | 0.5350704193115234 |
| keywords[6].display_name | Computer network |
| keywords[7].id | https://openalex.org/keywords/efficient-energy-use |
| keywords[7].score | 0.4491894841194153 |
| keywords[7].display_name | Efficient energy use |
| keywords[8].id | https://openalex.org/keywords/throughput |
| keywords[8].score | 0.4451104700565338 |
| keywords[8].display_name | Throughput |
| keywords[9].id | https://openalex.org/keywords/distributed-computing |
| keywords[9].score | 0.3832918405532837 |
| keywords[9].display_name | Distributed computing |
| keywords[10].id | https://openalex.org/keywords/wireless |
| keywords[10].score | 0.3022860884666443 |
| keywords[10].display_name | Wireless |
| keywords[11].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[11].score | 0.2944451570510864 |
| keywords[11].display_name | Wireless sensor network |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.12264454364776611 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.10425648093223572 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.aej.2023.11.041 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764413287 |
| locations[0].source.issn | 1110-0168, 2090-2670 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1110-0168 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Alexandria Engineering Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Alexandria Engineering Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aej.2023.11.041 |
| locations[1].id | pmh:oai:doaj.org/article:e0e3ffb08ca94aef9d7f91d070cce0f0 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Alexandria Engineering Journal, Vol 86, Iss , Pp 56-66 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e0e3ffb08ca94aef9d7f91d070cce0f0 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037527696 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3200-6349 |
| authorships[0].author.display_name | Prakhar Consul |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3129773123 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India |
| authorships[0].institutions[0].id | https://openalex.org/I3129773123 |
| authorships[0].institutions[0].ror | https://ror.org/00an5hx75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3129773123 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Bennett University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prakhar Consul |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India |
| authorships[1].author.id | https://openalex.org/A5051575430 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7495-5032 |
| authorships[1].author.display_name | Ishan Budhiraja |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3129773123 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India |
| authorships[1].institutions[0].id | https://openalex.org/I3129773123 |
| authorships[1].institutions[0].ror | https://ror.org/00an5hx75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3129773123 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Bennett University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ishan Budhiraja |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India |
| authorships[2].author.id | https://openalex.org/A5104235701 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ruchika Arora |
| authorships[2].affiliations[0].raw_affiliation_string | SR University, Ananthasagar, Hasanparthy Hanumakonda, Warangal, Telangana, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ruchika Arora |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | SR University, Ananthasagar, Hasanparthy Hanumakonda, Warangal, Telangana, India |
| authorships[3].author.id | https://openalex.org/A5005877741 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0229-608X |
| authorships[3].author.display_name | Sahil Garg |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9736820 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrical Engineering Department, École de Technologie Supérieure, Montreal, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I9736820 |
| authorships[3].institutions[0].ror | https://ror.org/0020snb74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I49663120, https://openalex.org/I9736820 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | École de Technologie Supérieure |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sahil Garg |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrical Engineering Department, École de Technologie Supérieure, Montreal, Canada |
| authorships[4].author.id | https://openalex.org/A5088745395 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6550-749X |
| authorships[4].author.display_name | Bong Jun Choi |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering & School of Electronic Engineering, Soongsil University, Seoul, Korea |
| authorships[4].institutions[0].id | https://openalex.org/I141371507 |
| authorships[4].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Soongsil University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bong Jun Choi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering & School of Electronic Engineering, Soongsil University, Seoul, Korea |
| authorships[5].author.id | https://openalex.org/A5037865550 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5906-9422 |
| authorships[5].author.display_name | M. Shamim Hossain |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I28022161 |
| authorships[5].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | King Saud University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | M. Shamim Hossain |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aej.2023.11.041 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Federated reinforcement learning based task offloading approach for MEC-assisted WBAN-enabled IoMT |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W2024136090, https://openalex.org/W4391331176, https://openalex.org/W2031695474, https://openalex.org/W2586732548, https://openalex.org/W2889514476 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aej.2023.11.041 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764413287 |
| best_oa_location.source.issn | 1110-0168, 2090-2670 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1110-0168 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Alexandria Engineering Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Alexandria Engineering Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aej.2023.11.041 |
| primary_location.id | doi:10.1016/j.aej.2023.11.041 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764413287 |
| primary_location.source.issn | 1110-0168, 2090-2670 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1110-0168 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Alexandria Engineering Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Alexandria Engineering Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aej.2023.11.041 |
| publication_date | 2023-11-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3203154572, https://openalex.org/W6850476578, https://openalex.org/W3097472721, https://openalex.org/W6842776182, https://openalex.org/W4205136930, https://openalex.org/W6849404408, https://openalex.org/W2949226003, https://openalex.org/W4298148350, https://openalex.org/W6848240292, https://openalex.org/W4387398832, https://openalex.org/W6846640558, https://openalex.org/W3128141153, https://openalex.org/W3108088019, https://openalex.org/W2888442703, https://openalex.org/W6806469912, https://openalex.org/W4220674695, https://openalex.org/W6839433871, https://openalex.org/W3034730089, https://openalex.org/W3036401997, https://openalex.org/W3116758044, https://openalex.org/W6795106592, https://openalex.org/W4385626995, https://openalex.org/W3134947650, https://openalex.org/W3107298752, https://openalex.org/W3028752302, https://openalex.org/W6761156670, https://openalex.org/W2907086092, https://openalex.org/W2810302425, https://openalex.org/W6852447333, https://openalex.org/W2969952255, https://openalex.org/W3049302593, https://openalex.org/W2963956198, https://openalex.org/W3183803569, https://openalex.org/W2895973886, https://openalex.org/W6855715328, https://openalex.org/W3035620887, https://openalex.org/W6781453669, https://openalex.org/W3161781307, https://openalex.org/W6799915278, https://openalex.org/W4290994955, https://openalex.org/W2618778383, https://openalex.org/W4390187528, https://openalex.org/W4377079791, https://openalex.org/W4324269512, https://openalex.org/W4307176608, https://openalex.org/W4321473197, https://openalex.org/W4301836950, https://openalex.org/W4234135121, https://openalex.org/W4313027383, https://openalex.org/W4205657303, https://openalex.org/W4401540678, https://openalex.org/W4285784540 |
| referenced_works_count | 52 |
| abstract_inverted_index.A | 117 |
| abstract_inverted_index.a | 113 |
| abstract_inverted_index.6G | 37 |
| abstract_inverted_index.FA | 150 |
| abstract_inverted_index.In | 130 |
| abstract_inverted_index.TO | 123 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.as | 110, 112, 186, 234 |
| abstract_inverted_index.by | 155, 218, 225, 231 |
| abstract_inverted_index.in | 34, 87, 104, 127 |
| abstract_inverted_index.is | 125 |
| abstract_inverted_index.of | 3, 13, 16, 28, 31, 72, 97, 115, 135, 148, 176 |
| abstract_inverted_index.on | 89, 160, 170 |
| abstract_inverted_index.to | 24, 68, 188, 236 |
| abstract_inverted_index.QoS | 144 |
| abstract_inverted_index.The | 0, 146, 181 |
| abstract_inverted_index.and | 7, 41, 47, 52, 60, 76, 107, 164, 199, 204, 220, 228 |
| abstract_inverted_index.the | 11, 14, 25, 35, 90, 131, 149, 156, 171, 174, 189, 192, 212, 216, 222, 237 |
| abstract_inverted_index.was | 151, 179 |
| abstract_inverted_index.(FA) | 85 |
| abstract_inverted_index.Area | 57 |
| abstract_inverted_index.Body | 56 |
| abstract_inverted_index.Edge | 62 |
| abstract_inverted_index.FRL. | 167 |
| abstract_inverted_index.IoMT | 67 |
| abstract_inverted_index.QoS. | 81 |
| abstract_inverted_index.WBAN | 206 |
| abstract_inverted_index.data | 45, 73, 101 |
| abstract_inverted_index.era. | 38 |
| abstract_inverted_index.good | 80 |
| abstract_inverted_index.into | 140 |
| abstract_inverted_index.lack | 114 |
| abstract_inverted_index.need | 43 |
| abstract_inverted_index.show | 210 |
| abstract_inverted_index.that | 211 |
| abstract_inverted_index.then | 152 |
| abstract_inverted_index.this | 128 |
| abstract_inverted_index.time | 229 |
| abstract_inverted_index.well | 111 |
| abstract_inverted_index.were | 138 |
| abstract_inverted_index.with | 49, 142 |
| abstract_inverted_index.(FRL) | 121 |
| abstract_inverted_index.(MEC) | 64 |
| abstract_inverted_index.(QoS) | 30 |
| abstract_inverted_index.FRLTO | 194 |
| abstract_inverted_index.WBAN, | 88 |
| abstract_inverted_index.about | 232 |
| abstract_inverted_index.based | 122, 159, 169 |
| abstract_inverted_index.delay | 230 |
| abstract_inverted_index.equal | 143 |
| abstract_inverted_index.frame | 83 |
| abstract_inverted_index.hand, | 92 |
| abstract_inverted_index.large | 70 |
| abstract_inverted_index.other | 91 |
| abstract_inverted_index.tasks | 177 |
| abstract_inverted_index.that, | 185 |
| abstract_inverted_index.total | 205 |
| abstract_inverted_index.types | 134 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.while | 78, 201 |
| abstract_inverted_index.(IoMT) | 19 |
| abstract_inverted_index.(WBAN) | 59 |
| abstract_inverted_index.37.06% | 219 |
| abstract_inverted_index.6.23%, | 233 |
| abstract_inverted_index.69.84% | 227 |
| abstract_inverted_index.Mobile | 61 |
| abstract_inverted_index.Things | 18 |
| abstract_inverted_index.amount | 175 |
| abstract_inverted_index.around | 226 |
| abstract_inverted_index.create | 93 |
| abstract_inverted_index.during | 100 |
| abstract_inverted_index.energy | 53, 108, 161, 197, 223 |
| abstract_inverted_index.frames | 99 |
| abstract_inverted_index.handle | 69 |
| abstract_inverted_index.needs. | 145 |
| abstract_inverted_index.number | 96 |
| abstract_inverted_index.queues | 141 |
| abstract_inverted_index.scheme | 214 |
| abstract_inverted_index.usage. | 54 |
| abstract_inverted_index.vertex | 158 |
| abstract_inverted_index.within | 10 |
| abstract_inverted_index.Medical | 17 |
| abstract_inverted_index.Network | 58 |
| abstract_inverted_index.Quality | 27 |
| abstract_inverted_index.Service | 29 |
| abstract_inverted_index.amounts | 71 |
| abstract_inverted_index.control | 98 |
| abstract_inverted_index.enabled | 66 |
| abstract_inverted_index.latency | 51, 106, 200 |
| abstract_inverted_index.medical | 5 |
| abstract_inverted_index.reduced | 221 |
| abstract_inverted_index.reduces | 196 |
| abstract_inverted_index.results | 183, 209 |
| abstract_inverted_index.status, | 173 |
| abstract_inverted_index.systems | 86 |
| abstract_inverted_index.Approach | 124 |
| abstract_inverted_index.Finally, | 168 |
| abstract_inverted_index.Internet | 15 |
| abstract_inverted_index.Learning | 120 |
| abstract_inverted_index.Wireless | 55 |
| abstract_inverted_index.baseline | 190, 240 |
| abstract_inverted_index.compared | 187, 235 |
| abstract_inverted_index.duration | 147 |
| abstract_inverted_index.elevated | 26 |
| abstract_inverted_index.existing | 172, 239 |
| abstract_inverted_index.improves | 215 |
| abstract_inverted_index.latency, | 163 |
| abstract_inverted_index.proposed | 213 |
| abstract_inverted_index.schemes, | 191 |
| abstract_inverted_index.schemes. | 241 |
| abstract_inverted_index.sensing, | 74 |
| abstract_inverted_index.services | 40 |
| abstract_inverted_index.transfer | 46 |
| abstract_inverted_index.wearable | 4 |
| abstract_inverted_index.Computing | 63 |
| abstract_inverted_index.Federated | 118 |
| abstract_inverted_index.Numerical | 208 |
| abstract_inverted_index.apparatus | 6 |
| abstract_inverted_index.different | 133 |
| abstract_inverted_index.enhancing | 202 |
| abstract_inverted_index.excessive | 95 |
| abstract_inverted_index.framework | 12 |
| abstract_inverted_index.offloaded | 178 |
| abstract_inverted_index.research. | 129 |
| abstract_inverted_index.resulting | 103 |
| abstract_inverted_index.separated | 139 |
| abstract_inverted_index.suggested | 193 |
| abstract_inverted_index.ultra-low | 50 |
| abstract_inverted_index.Healthcare | 39 |
| abstract_inverted_index.beginning, | 132 |
| abstract_inverted_index.determined | 154 |
| abstract_inverted_index.healthcare | 8, 33 |
| abstract_inverted_index.introduces | 20 |
| abstract_inverted_index.pertaining | 23 |
| abstract_inverted_index.processing | 48, 77 |
| abstract_inverted_index.simulation | 182 |
| abstract_inverted_index.throughput | 165, 203, 217 |
| abstract_inverted_index.Traditional | 82 |
| abstract_inverted_index.aggregation | 84, 157 |
| abstract_inverted_index.consumption | 198, 224 |
| abstract_inverted_index.demonstrate | 184 |
| abstract_inverted_index.determined. | 180 |
| abstract_inverted_index.efficiently | 195 |
| abstract_inverted_index.exponential | 1 |
| abstract_inverted_index.forthcoming | 36 |
| abstract_inverted_index.information | 9, 137 |
| abstract_inverted_index.intelligent | 32 |
| abstract_inverted_index.maintaining | 79 |
| abstract_inverted_index.recommended | 126 |
| abstract_inverted_index.significant | 105 |
| abstract_inverted_index.applications | 42 |
| abstract_inverted_index.complexities | 22 |
| abstract_inverted_index.consumption, | 109, 162 |
| abstract_inverted_index.flexibility. | 116 |
| abstract_inverted_index.technologies | 65 |
| abstract_inverted_index.utilization. | 207 |
| abstract_inverted_index.Reinforcement | 119 |
| abstract_inverted_index.automatically | 153 |
| abstract_inverted_index.proliferation | 2 |
| abstract_inverted_index.supplementary | 21 |
| abstract_inverted_index.transmission, | 75, 102 |
| abstract_inverted_index.ultra-reliable | 44 |
| abstract_inverted_index.service-related | 136 |
| abstract_inverted_index.state-of-the-art | 238 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5088745395 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I141371507 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.96491076 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |