Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2206.10185
Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of communication cost, and it can also compromise the privacy of each agent's local behavior policy. Federated reinforcement learning is a framework in which $N$ agents collaboratively learn a global model, without sharing their individual data and policies. This global model is the unique fixed point of the average of $N$ local operators, corresponding to the $N$ agents. Each agent maintains a local copy of the global model and updates it using locally sampled data. In this paper, we show that by careful collaboration of the agents in solving this joint fixed point problem, we can find the global model $N$ times faster, also known as linear speedup. We first propose a general framework for federated stochastic approximation with Markovian noise and heterogeneity, showing linear speedup in convergence. We then apply this framework to federated reinforcement learning algorithms, examining the convergence of federated on-policy TD, off-policy TD, and $Q$-learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2206.10185
- https://arxiv.org/pdf/2206.10185
- OA Status
- green
- Cited By
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283313823
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283313823Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2206.10185Digital Object Identifier
- Title
-
Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-21Full publication date if available
- Authors
-
Sajad Khodadadian, Pranay Sharma, Gauri Joshi, Siva Theja MaguluriList of authors in order
- Landing page
-
https://arxiv.org/abs/2206.10185Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2206.10185Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2206.10185Direct OA link when available
- Concepts
-
Speedup, Reinforcement learning, Computer science, Leverage (statistics), Convergence (economics), Markov decision process, Markov process, Sampling (signal processing), Task (project management), Artificial intelligence, Theoretical computer science, Machine learning, Parallel computing, Mathematics, Computer vision, Statistics, Economics, Filter (signal processing), Management, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 5, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283313823 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2206.10185 |
| ids.doi | https://doi.org/10.48550/arxiv.2206.10185 |
| ids.openalex | https://openalex.org/W4283313823 |
| fwci | |
| type | preprint |
| title | Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13553 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9909999966621399 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Age of Information Optimization |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9686999917030334 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C68339613 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9245167374610901 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[0].display_name | Speedup |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8521500825881958 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8114057779312134 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153083717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7578745484352112 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[3].display_name | Leverage (statistics) |
| concepts[4].id | https://openalex.org/C2777303404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6395661234855652 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[4].display_name | Convergence (economics) |
| concepts[5].id | https://openalex.org/C106189395 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6298588514328003 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q176789 |
| concepts[5].display_name | Markov decision process |
| concepts[6].id | https://openalex.org/C159886148 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5067394375801086 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[6].display_name | Markov process |
| concepts[7].id | https://openalex.org/C140779682 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43687236309051514 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[7].display_name | Sampling (signal processing) |
| concepts[8].id | https://openalex.org/C2780451532 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4170117974281311 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[8].display_name | Task (project management) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3725714087486267 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3542281985282898 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32949644327163696 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C173608175 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14492309093475342 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[12].display_name | Parallel computing |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10983377695083618 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C106131492 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[17].display_name | Filter (signal processing) |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C50522688 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[19].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/speedup |
| keywords[0].score | 0.9245167374610901 |
| keywords[0].display_name | Speedup |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8521500825881958 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.8114057779312134 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/leverage |
| keywords[3].score | 0.7578745484352112 |
| keywords[3].display_name | Leverage (statistics) |
| keywords[4].id | https://openalex.org/keywords/convergence |
| keywords[4].score | 0.6395661234855652 |
| keywords[4].display_name | Convergence (economics) |
| keywords[5].id | https://openalex.org/keywords/markov-decision-process |
| keywords[5].score | 0.6298588514328003 |
| keywords[5].display_name | Markov decision process |
| keywords[6].id | https://openalex.org/keywords/markov-process |
| keywords[6].score | 0.5067394375801086 |
| keywords[6].display_name | Markov process |
| keywords[7].id | https://openalex.org/keywords/sampling |
| keywords[7].score | 0.43687236309051514 |
| keywords[7].display_name | Sampling (signal processing) |
| keywords[8].id | https://openalex.org/keywords/task |
| keywords[8].score | 0.4170117974281311 |
| keywords[8].display_name | Task (project management) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3725714087486267 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3542281985282898 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.32949644327163696 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/parallel-computing |
| keywords[12].score | 0.14492309093475342 |
| keywords[12].display_name | Parallel computing |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.10983377695083618 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2206.10185 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2206.10185 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2206.10185 |
| locations[1].id | doi:10.48550/arxiv.2206.10185 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2206.10185 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5045270609 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5197-4652 |
| authorships[0].author.display_name | Sajad Khodadadian |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khodadadian, Sajad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028196076 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-8027-7913 |
| authorships[1].author.display_name | Pranay Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharma, Pranay |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067441201 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[2].author.display_name | Gauri Joshi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshi, Gauri |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021806638 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5797-1639 |
| authorships[3].author.display_name | Siva Theja Maguluri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Maguluri, Siva Theja |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2206.10185 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-06-24T00:00:00 |
| display_name | Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13553 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9909999966621399 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Age of Information Optimization |
| related_works | https://openalex.org/W4327568679, https://openalex.org/W3096874164, https://openalex.org/W2768698792, https://openalex.org/W1985560493, https://openalex.org/W2937181779, https://openalex.org/W2386410636, https://openalex.org/W2357975469, https://openalex.org/W2145363145, https://openalex.org/W1626977535, https://openalex.org/W2341346307 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2206.10185 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2206.10185 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2206.10185 |
| primary_location.id | pmh:oai:arXiv.org:2206.10185 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2206.10185 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2206.10185 |
| publication_date | 2022-06-21 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 58, 66, 99, 149 |
| abstract_inverted_index.In | 113 |
| abstract_inverted_index.We | 146, 166 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.be | 33 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 36, 60, 125, 164 |
| abstract_inverted_index.is | 15, 57, 79 |
| abstract_inverted_index.it | 42, 108 |
| abstract_inverted_index.of | 9, 38, 48, 84, 87, 102, 122, 179 |
| abstract_inverted_index.to | 28, 92, 171 |
| abstract_inverted_index.we | 116, 132 |
| abstract_inverted_index.$N$ | 62, 88, 94, 138 |
| abstract_inverted_index.TD, | 182, 184 |
| abstract_inverted_index.and | 41, 74, 106, 159, 185 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 32, 43, 133 |
| abstract_inverted_index.for | 152 |
| abstract_inverted_index.the | 7, 13, 26, 46, 80, 85, 93, 103, 123, 135, 177 |
| abstract_inverted_index.Each | 96 |
| abstract_inverted_index.This | 76 |
| abstract_inverted_index.also | 44, 141 |
| abstract_inverted_index.copy | 101 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.each | 49 |
| abstract_inverted_index.find | 134 |
| abstract_inverted_index.from | 12, 25 |
| abstract_inverted_index.show | 117 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.then | 167 |
| abstract_inverted_index.this | 114, 127, 169 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.Since | 0 |
| abstract_inverted_index.agent | 97 |
| abstract_inverted_index.apply | 168 |
| abstract_inverted_index.cost, | 40 |
| abstract_inverted_index.data. | 112 |
| abstract_inverted_index.first | 147 |
| abstract_inverted_index.fixed | 82, 129 |
| abstract_inverted_index.joint | 128 |
| abstract_inverted_index.known | 142 |
| abstract_inverted_index.learn | 65 |
| abstract_inverted_index.local | 51, 89, 100 |
| abstract_inverted_index.model | 78, 105, 137 |
| abstract_inverted_index.noise | 158 |
| abstract_inverted_index.point | 83, 130 |
| abstract_inverted_index.split | 17 |
| abstract_inverted_index.terms | 37 |
| abstract_inverted_index.their | 71 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.times | 139 |
| abstract_inverted_index.using | 109 |
| abstract_inverted_index.which | 61 |
| abstract_inverted_index.across | 18 |
| abstract_inverted_index.agents | 27, 63, 124 |
| abstract_inverted_index.global | 67, 77, 104, 136 |
| abstract_inverted_index.linear | 144, 162 |
| abstract_inverted_index.model, | 68 |
| abstract_inverted_index.paper, | 115 |
| abstract_inverted_index.unique | 81 |
| abstract_inverted_index.agent's | 50 |
| abstract_inverted_index.agents. | 20, 95 |
| abstract_inverted_index.average | 86 |
| abstract_inverted_index.careful | 120 |
| abstract_inverted_index.central | 30 |
| abstract_inverted_index.faster, | 140 |
| abstract_inverted_index.general | 150 |
| abstract_inverted_index.locally | 110 |
| abstract_inverted_index.policy. | 53 |
| abstract_inverted_index.privacy | 47 |
| abstract_inverted_index.propose | 148 |
| abstract_inverted_index.sampled | 111 |
| abstract_inverted_index.sharing | 70 |
| abstract_inverted_index.showing | 161 |
| abstract_inverted_index.solving | 126 |
| abstract_inverted_index.speedup | 163 |
| abstract_inverted_index.updates | 107 |
| abstract_inverted_index.usually | 16 |
| abstract_inverted_index.without | 69 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.behavior | 52 |
| abstract_inverted_index.learning | 2, 56, 174 |
| abstract_inverted_index.location | 31 |
| abstract_inverted_index.multiple | 19 |
| abstract_inverted_index.problem, | 131 |
| abstract_inverted_index.sampling | 10 |
| abstract_inverted_index.speedup. | 145 |
| abstract_inverted_index.Federated | 54 |
| abstract_inverted_index.Markovian | 157 |
| abstract_inverted_index.examining | 176 |
| abstract_inverted_index.expensive | 35 |
| abstract_inverted_index.federated | 153, 172, 180 |
| abstract_inverted_index.framework | 59, 151, 170 |
| abstract_inverted_index.maintains | 98 |
| abstract_inverted_index.on-policy | 181 |
| abstract_inverted_index.policies. | 75 |
| abstract_inverted_index.algorithms | 3 |
| abstract_inverted_index.compromise | 45 |
| abstract_inverted_index.individual | 72 |
| abstract_inverted_index.off-policy | 183 |
| abstract_inverted_index.operators, | 90 |
| abstract_inverted_index.stochastic | 154 |
| abstract_inverted_index.algorithms, | 175 |
| abstract_inverted_index.convergence | 178 |
| abstract_inverted_index.environment | 14 |
| abstract_inverted_index.notoriously | 5 |
| abstract_inverted_index.convergence. | 165 |
| abstract_inverted_index.observations | 11, 24 |
| abstract_inverted_index.transferring | 22 |
| abstract_inverted_index.$Q$-learning. | 186 |
| abstract_inverted_index.approximation | 155 |
| abstract_inverted_index.collaboration | 121 |
| abstract_inverted_index.communication | 39 |
| abstract_inverted_index.corresponding | 91 |
| abstract_inverted_index.prohibitively | 34 |
| abstract_inverted_index.reinforcement | 1, 55, 173 |
| abstract_inverted_index.heterogeneity, | 160 |
| abstract_inverted_index.collaboratively | 64 |
| abstract_inverted_index.data-intensive, | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |