FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.03777
With the emerging application of Federated Learning (FL) in decision-making scenarios, it is imperative to regulate model fairness to prevent disparities across sensitive groups (e.g., female, male). Current research predominantly focuses on two concepts of group fairness within FL: Global Fairness (overall model disparity across all clients) and Local Fairness (the disparity within each client). However, the non-decomposable, non-differentiable nature of fairness criteria poses two fundamental, unresolved challenges for fair FL: (i) Harmonizing global and local fairness, especially in multi-class setting; (ii) Enabling a controllable, optimal accuracy-fairness trade-off. To tackle these challenges, we propose a novel controllable federated group-fairness calibration framework, named FedFACT. FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints, yielding models with minimal performance decline while guaranteeing fairness. Building on the characterization of the optimal fair classifiers, we reformulate fair federated learning as a personalized cost-sensitive learning problem for in-processing and a bi-level optimization for post-processing. Theoretically, we provide convergence and generalization guarantees for FedFACT to approach the near-optimal accuracy under given fairness levels. Extensive experiments on multiple datasets across various data heterogeneity demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.03777
- https://arxiv.org/pdf/2506.03777
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416073756
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416073756Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.03777Digital Object Identifier
- Title
-
FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-04Full publication date if available
- Authors
-
Li Zhang, Zhongxuan Han, C. L. Philip Chen, Xiaohua Feng, Jiaming Zhang, Yuyuan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.03777Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.03777Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.03777Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416073756 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.03777 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.03777 |
| ids.openalex | https://openalex.org/W4416073756 |
| fwci | |
| type | preprint |
| title | FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.03777 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.03777 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.03777 |
| locations[1].id | doi:10.48550/arxiv.2506.03777 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.03777 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103482758 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4605-4536 |
| authorships[0].author.display_name | Li Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044163944 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9957-7325 |
| authorships[1].author.display_name | Zhongxuan Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han, Zhongxuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100643265 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5451-7230 |
| authorships[2].author.display_name | C. L. Philip Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | chen, Chaochao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069514243 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1026-1127 |
| authorships[3].author.display_name | Xiaohua Feng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng, Xiaohua |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100453771 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1929-5481 |
| authorships[4].author.display_name | Jiaming Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Jiaming |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101535331 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4896-2885 |
| authorships[5].author.display_name | Yuyuan Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Yuyuan |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.03777 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:53:01.154624 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.03777 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.03777 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.03777 |
| primary_location.id | pmh:oai:arXiv.org:2506.03777 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.03777 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.03777 |
| publication_date | 2025-06-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 83, 94, 139, 147 |
| abstract_inverted_index.To | 88 |
| abstract_inverted_index.as | 138 |
| abstract_inverted_index.in | 8, 78, 185 |
| abstract_inverted_index.is | 12 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 4, 34, 60, 128 |
| abstract_inverted_index.on | 31, 125, 172 |
| abstract_inverted_index.to | 14, 18, 161 |
| abstract_inverted_index.we | 92, 133, 153 |
| abstract_inverted_index.(i) | 71 |
| abstract_inverted_index.FL: | 38, 70 |
| abstract_inverted_index.all | 45 |
| abstract_inverted_index.and | 47, 74, 111, 146, 156, 188 |
| abstract_inverted_index.for | 68, 144, 150, 159 |
| abstract_inverted_index.the | 1, 56, 105, 126, 129, 163 |
| abstract_inverted_index.two | 32, 64 |
| abstract_inverted_index.(FL) | 7 |
| abstract_inverted_index.(ii) | 81 |
| abstract_inverted_index.(the | 50 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.both | 109 |
| abstract_inverted_index.data | 177 |
| abstract_inverted_index.each | 53 |
| abstract_inverted_index.fair | 69, 131, 135 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.with | 117 |
| abstract_inverted_index.Local | 48 |
| abstract_inverted_index.given | 167 |
| abstract_inverted_index.group | 35 |
| abstract_inverted_index.local | 75, 112 |
| abstract_inverted_index.model | 16, 42 |
| abstract_inverted_index.named | 101 |
| abstract_inverted_index.novel | 95 |
| abstract_inverted_index.poses | 63 |
| abstract_inverted_index.these | 90 |
| abstract_inverted_index.under | 108, 166 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.(e.g., | 24 |
| abstract_inverted_index.Global | 39 |
| abstract_inverted_index.across | 21, 44, 175 |
| abstract_inverted_index.global | 73, 110 |
| abstract_inverted_index.groups | 23 |
| abstract_inverted_index.male). | 26 |
| abstract_inverted_index.models | 116 |
| abstract_inverted_index.nature | 59 |
| abstract_inverted_index.tackle | 89 |
| abstract_inverted_index.within | 37, 52 |
| abstract_inverted_index.Current | 27 |
| abstract_inverted_index.FedFACT | 103, 160, 181 |
| abstract_inverted_index.decline | 120 |
| abstract_inverted_index.female, | 25 |
| abstract_inverted_index.focuses | 30 |
| abstract_inverted_index.levels. | 169 |
| abstract_inverted_index.minimal | 118 |
| abstract_inverted_index.optimal | 85, 130 |
| abstract_inverted_index.prevent | 19 |
| abstract_inverted_index.problem | 143 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.provide | 154 |
| abstract_inverted_index.various | 176 |
| abstract_inverted_index.(overall | 41 |
| abstract_inverted_index.Building | 124 |
| abstract_inverted_index.Enabling | 82 |
| abstract_inverted_index.Fairness | 40, 49 |
| abstract_inverted_index.FedFACT. | 102 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.Learning | 6 |
| abstract_inverted_index.accuracy | 165, 187 |
| abstract_inverted_index.approach | 162 |
| abstract_inverted_index.bi-level | 148 |
| abstract_inverted_index.client). | 54 |
| abstract_inverted_index.clients) | 46 |
| abstract_inverted_index.concepts | 33 |
| abstract_inverted_index.criteria | 62 |
| abstract_inverted_index.datasets | 174 |
| abstract_inverted_index.emerging | 2 |
| abstract_inverted_index.fairness | 17, 36, 61, 113, 168 |
| abstract_inverted_index.learning | 137, 142 |
| abstract_inverted_index.multiple | 173 |
| abstract_inverted_index.regulate | 15 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.setting; | 80 |
| abstract_inverted_index.yielding | 115 |
| abstract_inverted_index.Extensive | 170 |
| abstract_inverted_index.Federated | 5 |
| abstract_inverted_index.balancing | 186 |
| abstract_inverted_index.baselines | 184 |
| abstract_inverted_index.disparity | 43, 51 |
| abstract_inverted_index.fairness, | 76 |
| abstract_inverted_index.fairness. | 123, 190 |
| abstract_inverted_index.federated | 97, 136 |
| abstract_inverted_index.sensitive | 22 |
| abstract_inverted_index.challenges | 67 |
| abstract_inverted_index.especially | 77 |
| abstract_inverted_index.framework, | 100 |
| abstract_inverted_index.guarantees | 158 |
| abstract_inverted_index.identifies | 104 |
| abstract_inverted_index.imperative | 13 |
| abstract_inverted_index.scenarios, | 10 |
| abstract_inverted_index.trade-off. | 87 |
| abstract_inverted_index.unresolved | 66 |
| abstract_inverted_index.Harmonizing | 72 |
| abstract_inverted_index.application | 3 |
| abstract_inverted_index.calibration | 99 |
| abstract_inverted_index.challenges, | 91 |
| abstract_inverted_index.classifiers | 107 |
| abstract_inverted_index.convergence | 155 |
| abstract_inverted_index.demonstrate | 179 |
| abstract_inverted_index.disparities | 20 |
| abstract_inverted_index.experiments | 171 |
| abstract_inverted_index.multi-class | 79 |
| abstract_inverted_index.outperforms | 183 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.reformulate | 134 |
| abstract_inverted_index.classifiers, | 132 |
| abstract_inverted_index.consistently | 182 |
| abstract_inverted_index.constraints, | 114 |
| abstract_inverted_index.controllable | 96 |
| abstract_inverted_index.fundamental, | 65 |
| abstract_inverted_index.global-local | 189 |
| abstract_inverted_index.guaranteeing | 122 |
| abstract_inverted_index.near-optimal | 164 |
| abstract_inverted_index.optimization | 149 |
| abstract_inverted_index.personalized | 140 |
| abstract_inverted_index.Bayes-optimal | 106 |
| abstract_inverted_index.controllable, | 84 |
| abstract_inverted_index.heterogeneity | 178 |
| abstract_inverted_index.in-processing | 145 |
| abstract_inverted_index.predominantly | 29 |
| abstract_inverted_index.Theoretically, | 152 |
| abstract_inverted_index.cost-sensitive | 141 |
| abstract_inverted_index.generalization | 157 |
| abstract_inverted_index.group-fairness | 98 |
| abstract_inverted_index.decision-making | 9 |
| abstract_inverted_index.characterization | 127 |
| abstract_inverted_index.post-processing. | 151 |
| abstract_inverted_index.accuracy-fairness | 86 |
| abstract_inverted_index.non-decomposable, | 57 |
| abstract_inverted_index.non-differentiable | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |