FedGRec: Dynamic Spatio-Temporal Federated Graph Learning for Secure and Efficient Cross-Border Recommendations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.18177
Due to the highly sensitive nature of certain data in cross-border sharing, collaborative cross-border recommendations and data sharing are often subject to stringent privacy protection regulations, resulting in insufficient data for model training. Consequently, achieving efficient cross-border business recommendations while ensuring privacy security poses a significant challenge. Although federated learning has demonstrated broad potential in collaborative training without exposing raw data, most existing federated learning-based GNN training methods still rely on federated averaging strategies, which perform suboptimally on highly heterogeneous graph data. To address this issue, we propose FedGRec, a privacy-preserving federated graph learning method for cross-border recommendations. FedGRec captures user preferences from distributed multi-domain data to enhance recommendation performance across all domains without privacy leakage. Specifically, FedGRec leverages collaborative signals from local subgraphs associated with users or items to enrich their representation learning. Additionally, it employs dynamic spatiotemporal modeling to integrate global and local user preferences in real time based on business recommendation states, thereby deriving the final representations of target users and candidate items. By automatically filtering relevant behaviors, FedGRec effectively mitigates noise interference from unreliable neighbors. Furthermore, through a personalized federated aggregation strategy, FedGRec adapts global preferences to heterogeneous domain data, enabling collaborative learning of user preferences across multiple domains. Extensive experiments on three datasets demonstrate that FedGRec consistently outperforms competitive single-domain and cross-domain baselines while effectively preserving data privacy in cross-border recommendations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.18177
- https://arxiv.org/pdf/2505.18177
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414580867
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414580867Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.18177Digital Object Identifier
- Title
-
FedGRec: Dynamic Spatio-Temporal Federated Graph Learning for Secure and Efficient Cross-Border RecommendationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-15Full publication date if available
- Authors
-
Zhi Tan, Jieyun Zheng, Xingxing Yang, Chi Zhang, Deng Wen-xin, Wenyong WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.18177Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.18177Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.18177Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414580867 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.18177 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.18177 |
| ids.openalex | https://openalex.org/W4414580867 |
| fwci | |
| type | preprint |
| title | FedGRec: Dynamic Spatio-Temporal Federated Graph Learning for Secure and Efficient Cross-Border Recommendations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.98089998960495 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.18177 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.18177 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.18177 |
| locations[1].id | doi:10.48550/arxiv.2505.18177 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.18177 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083268766 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9971-9338 |
| authorships[0].author.display_name | Zhi Tan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tan, Zhizhong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112469799 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jieyun Zheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zheng, Jiexin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004709998 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-4439-4530 |
| authorships[2].author.display_name | Xingxing Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Xingxing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100458193 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6528-1427 |
| authorships[3].author.display_name | Chi Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Chi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101629843 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-6303-6230 |
| authorships[4].author.display_name | Deng Wen-xin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Deng, Weiping |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5028467074 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Wenyong Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wang, Wenyong |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.18177 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FedGRec: Dynamic Spatio-Temporal Federated Graph Learning for Secure and Efficient Cross-Border Recommendations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.98089998960495 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.18177 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.18177 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.18177 |
| primary_location.id | pmh:oai:arXiv.org:2505.18177 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.18177 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.18177 |
| publication_date | 2025-05-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 89, 181 |
| abstract_inverted_index.By | 166 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.in | 9, 27, 54, 147, 223 |
| abstract_inverted_index.it | 135 |
| abstract_inverted_index.of | 6, 160, 197 |
| abstract_inverted_index.on | 70, 77, 151, 205 |
| abstract_inverted_index.or | 127 |
| abstract_inverted_index.to | 1, 21, 106, 129, 140, 190 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.GNN | 65 |
| abstract_inverted_index.all | 111 |
| abstract_inverted_index.and | 15, 143, 163, 215 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.for | 30, 95 |
| abstract_inverted_index.has | 50 |
| abstract_inverted_index.raw | 59 |
| abstract_inverted_index.the | 2, 157 |
| abstract_inverted_index.data | 8, 16, 29, 105, 221 |
| abstract_inverted_index.from | 102, 121, 176 |
| abstract_inverted_index.most | 61 |
| abstract_inverted_index.real | 148 |
| abstract_inverted_index.rely | 69 |
| abstract_inverted_index.that | 209 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.time | 149 |
| abstract_inverted_index.user | 100, 145, 198 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.based | 150 |
| abstract_inverted_index.broad | 52 |
| abstract_inverted_index.data, | 60, 193 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.final | 158 |
| abstract_inverted_index.graph | 80, 92 |
| abstract_inverted_index.items | 128 |
| abstract_inverted_index.local | 122, 144 |
| abstract_inverted_index.model | 31 |
| abstract_inverted_index.noise | 174 |
| abstract_inverted_index.often | 19 |
| abstract_inverted_index.poses | 43 |
| abstract_inverted_index.still | 68 |
| abstract_inverted_index.their | 131 |
| abstract_inverted_index.three | 206 |
| abstract_inverted_index.users | 126, 162 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.while | 39, 218 |
| abstract_inverted_index.across | 110, 200 |
| abstract_inverted_index.adapts | 187 |
| abstract_inverted_index.domain | 192 |
| abstract_inverted_index.enrich | 130 |
| abstract_inverted_index.global | 142, 188 |
| abstract_inverted_index.highly | 3, 78 |
| abstract_inverted_index.issue, | 85 |
| abstract_inverted_index.items. | 165 |
| abstract_inverted_index.method | 94 |
| abstract_inverted_index.nature | 5 |
| abstract_inverted_index.target | 161 |
| abstract_inverted_index.FedGRec | 98, 117, 171, 186, 210 |
| abstract_inverted_index.address | 83 |
| abstract_inverted_index.certain | 7 |
| abstract_inverted_index.domains | 112 |
| abstract_inverted_index.dynamic | 137 |
| abstract_inverted_index.employs | 136 |
| abstract_inverted_index.enhance | 107 |
| abstract_inverted_index.methods | 67 |
| abstract_inverted_index.perform | 75 |
| abstract_inverted_index.privacy | 23, 41, 114, 222 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.sharing | 17 |
| abstract_inverted_index.signals | 120 |
| abstract_inverted_index.states, | 154 |
| abstract_inverted_index.subject | 20 |
| abstract_inverted_index.thereby | 155 |
| abstract_inverted_index.through | 180 |
| abstract_inverted_index.without | 57, 113 |
| abstract_inverted_index.Although | 47 |
| abstract_inverted_index.FedGRec, | 88 |
| abstract_inverted_index.business | 37, 152 |
| abstract_inverted_index.captures | 99 |
| abstract_inverted_index.datasets | 207 |
| abstract_inverted_index.deriving | 156 |
| abstract_inverted_index.domains. | 202 |
| abstract_inverted_index.enabling | 194 |
| abstract_inverted_index.ensuring | 40 |
| abstract_inverted_index.existing | 62 |
| abstract_inverted_index.exposing | 58 |
| abstract_inverted_index.leakage. | 115 |
| abstract_inverted_index.learning | 49, 93, 196 |
| abstract_inverted_index.modeling | 139 |
| abstract_inverted_index.multiple | 201 |
| abstract_inverted_index.relevant | 169 |
| abstract_inverted_index.security | 42 |
| abstract_inverted_index.sharing, | 11 |
| abstract_inverted_index.training | 56, 66 |
| abstract_inverted_index.Extensive | 203 |
| abstract_inverted_index.achieving | 34 |
| abstract_inverted_index.averaging | 72 |
| abstract_inverted_index.baselines | 217 |
| abstract_inverted_index.candidate | 164 |
| abstract_inverted_index.efficient | 35 |
| abstract_inverted_index.federated | 48, 63, 71, 91, 183 |
| abstract_inverted_index.filtering | 168 |
| abstract_inverted_index.integrate | 141 |
| abstract_inverted_index.learning. | 133 |
| abstract_inverted_index.leverages | 118 |
| abstract_inverted_index.mitigates | 173 |
| abstract_inverted_index.potential | 53 |
| abstract_inverted_index.resulting | 26 |
| abstract_inverted_index.sensitive | 4 |
| abstract_inverted_index.strategy, | 185 |
| abstract_inverted_index.stringent | 22 |
| abstract_inverted_index.subgraphs | 123 |
| abstract_inverted_index.training. | 32 |
| abstract_inverted_index.associated | 124 |
| abstract_inverted_index.behaviors, | 170 |
| abstract_inverted_index.challenge. | 46 |
| abstract_inverted_index.neighbors. | 178 |
| abstract_inverted_index.preserving | 220 |
| abstract_inverted_index.protection | 24 |
| abstract_inverted_index.unreliable | 177 |
| abstract_inverted_index.aggregation | 184 |
| abstract_inverted_index.competitive | 213 |
| abstract_inverted_index.demonstrate | 208 |
| abstract_inverted_index.distributed | 103 |
| abstract_inverted_index.effectively | 172, 219 |
| abstract_inverted_index.experiments | 204 |
| abstract_inverted_index.outperforms | 212 |
| abstract_inverted_index.performance | 109 |
| abstract_inverted_index.preferences | 101, 146, 189, 199 |
| abstract_inverted_index.significant | 45 |
| abstract_inverted_index.strategies, | 73 |
| abstract_inverted_index.Furthermore, | 179 |
| abstract_inverted_index.consistently | 211 |
| abstract_inverted_index.cross-border | 10, 13, 36, 96, 224 |
| abstract_inverted_index.cross-domain | 216 |
| abstract_inverted_index.demonstrated | 51 |
| abstract_inverted_index.insufficient | 28 |
| abstract_inverted_index.interference | 175 |
| abstract_inverted_index.multi-domain | 104 |
| abstract_inverted_index.personalized | 182 |
| abstract_inverted_index.regulations, | 25 |
| abstract_inverted_index.suboptimally | 76 |
| abstract_inverted_index.Additionally, | 134 |
| abstract_inverted_index.Consequently, | 33 |
| abstract_inverted_index.Specifically, | 116 |
| abstract_inverted_index.automatically | 167 |
| abstract_inverted_index.collaborative | 12, 55, 119, 195 |
| abstract_inverted_index.heterogeneous | 79, 191 |
| abstract_inverted_index.single-domain | 214 |
| abstract_inverted_index.learning-based | 64 |
| abstract_inverted_index.recommendation | 108, 153 |
| abstract_inverted_index.representation | 132 |
| abstract_inverted_index.spatiotemporal | 138 |
| abstract_inverted_index.recommendations | 14, 38 |
| abstract_inverted_index.representations | 159 |
| abstract_inverted_index.recommendations. | 97, 225 |
| abstract_inverted_index.privacy-preserving | 90 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |