FedPop: Federated Population-based Hyperparameter Tuning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i15.33732
Federated Learning (FL) is a distributed machine learning (ML) paradigm, in which multiple clients collaboratively train ML models without centralizing their local data. Similar to conventional ML pipelines, the client local optimization and server aggregation procedure in FL are sensitive to the hyperparameter (HP) selection. Despite extensive research on tuning HPs for centralized ML, these methods yield suboptimal results when employed in FL. This is mainly because their "training-after-tuning" framework is unsuitable for FL with limited client computation power. While some approaches have been proposed for HP-Tuning in FL, they are limited to the HPs for client local updates. In this work, we propose a novel HP-tuning algorithm, called Federated Population-based Hyperparameter Tuning (FedPop), to address this vital yet challenging problem. FedPop employs population-based evolutionary algorithms to optimize the HPs, which accommodates various HP types at both the client and server sides. Compared with prior tuning methods, FedPop employs an online "tuning-while-training" framework, offering computational efficiency and enabling the exploration of a broader HP search space. Our empirical validation on the common FL benchmarks and complex real-world FL datasets, including full-sized Non-IID ImageNet-1K, demonstrates the effectiveness of the proposed method, which substantially outperforms the concurrent state-of-the-art HP-tuning methods in FL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i15.33732
- https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409347486
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409347486Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i15.33732Digital Object Identifier
- Title
-
FedPop: Federated Population-based Hyperparameter TuningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Haokun Chen, Denis Krompaß, Jindong Gu, Volker TrespList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i15.33732Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887Direct OA link when available
- Concepts
-
Hyperparameter, Population, Computer science, Artificial intelligence, Demography, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409347486 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i15.33732 |
| ids.doi | https://doi.org/10.1609/aaai.v39i15.33732 |
| ids.openalex | https://openalex.org/W4409347486 |
| fwci | 1.8235294 |
| type | article |
| title | FedPop: Federated Population-based Hyperparameter Tuning |
| biblio.issue | 15 |
| biblio.volume | 39 |
| biblio.last_page | 15784 |
| biblio.first_page | 15776 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9332000017166138 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8816965222358704 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C2908647359 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4854162633419037 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[1].display_name | Population |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39365291595458984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.19218644499778748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C149923435 |
| concepts[4].level | 1 |
| concepts[4].score | 0.1086851954460144 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[4].display_name | Demography |
| concepts[5].id | https://openalex.org/C144024400 |
| concepts[5].level | 0 |
| concepts[5].score | 0.04597058892250061 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[5].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.8816965222358704 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/population |
| keywords[1].score | 0.4854162633419037 |
| keywords[1].display_name | Population |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.39365291595458984 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.19218644499778748 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/demography |
| keywords[4].score | 0.1086851954460144 |
| keywords[4].display_name | Demography |
| keywords[5].id | https://openalex.org/keywords/sociology |
| keywords[5].score | 0.04597058892250061 |
| keywords[5].display_name | Sociology |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i15.33732 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i15.33732 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045308982 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5485-2984 |
| authorships[0].author.display_name | Haokun Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haokun Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055134806 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Denis Krompaß |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Denis Krompaß |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055994909 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-0574-0129 |
| authorships[2].author.display_name | Jindong Gu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jindong Gu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074808403 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9428-3686 |
| authorships[3].author.display_name | Volker Tresp |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Volker Tresp |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FedPop: Federated Population-based Hyperparameter Tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9332000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4390421286, https://openalex.org/W4280563792, https://openalex.org/W2140186469, https://openalex.org/W4389724018, https://openalex.org/W4318719684, https://openalex.org/W2775233965, https://openalex.org/W4318559728 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i15.33732 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i15.33732 |
| primary_location.id | doi:10.1609/aaai.v39i15.33732 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33732/35887 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i15.33732 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 104, 161 |
| abstract_inverted_index.FL | 37, 73, 172, 177 |
| abstract_inverted_index.HP | 133, 163 |
| abstract_inverted_index.In | 99 |
| abstract_inverted_index.ML | 16, 26 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.at | 135 |
| abstract_inverted_index.in | 10, 36, 61, 87, 198 |
| abstract_inverted_index.is | 3, 64, 70 |
| abstract_inverted_index.of | 160, 186 |
| abstract_inverted_index.on | 48, 169 |
| abstract_inverted_index.to | 24, 40, 92, 114, 126 |
| abstract_inverted_index.we | 102 |
| abstract_inverted_index.FL, | 88 |
| abstract_inverted_index.FL. | 62, 199 |
| abstract_inverted_index.HPs | 50, 94 |
| abstract_inverted_index.ML, | 53 |
| abstract_inverted_index.Our | 166 |
| abstract_inverted_index.and | 32, 139, 156, 174 |
| abstract_inverted_index.are | 38, 90 |
| abstract_inverted_index.for | 51, 72, 85, 95 |
| abstract_inverted_index.the | 28, 41, 93, 128, 137, 158, 170, 184, 187, 193 |
| abstract_inverted_index.yet | 118 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.(HP) | 43 |
| abstract_inverted_index.(ML) | 8 |
| abstract_inverted_index.HPs, | 129 |
| abstract_inverted_index.This | 63 |
| abstract_inverted_index.been | 83 |
| abstract_inverted_index.both | 136 |
| abstract_inverted_index.have | 82 |
| abstract_inverted_index.some | 80 |
| abstract_inverted_index.they | 89 |
| abstract_inverted_index.this | 100, 116 |
| abstract_inverted_index.when | 59 |
| abstract_inverted_index.with | 74, 143 |
| abstract_inverted_index.While | 79 |
| abstract_inverted_index.data. | 22 |
| abstract_inverted_index.local | 21, 30, 97 |
| abstract_inverted_index.novel | 105 |
| abstract_inverted_index.prior | 144 |
| abstract_inverted_index.their | 20, 67 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.train | 15 |
| abstract_inverted_index.types | 134 |
| abstract_inverted_index.vital | 117 |
| abstract_inverted_index.which | 11, 130, 190 |
| abstract_inverted_index.work, | 101 |
| abstract_inverted_index.yield | 56 |
| abstract_inverted_index.FedPop | 121, 147 |
| abstract_inverted_index.Tuning | 112 |
| abstract_inverted_index.called | 108 |
| abstract_inverted_index.client | 29, 76, 96, 138 |
| abstract_inverted_index.common | 171 |
| abstract_inverted_index.mainly | 65 |
| abstract_inverted_index.models | 17 |
| abstract_inverted_index.online | 150 |
| abstract_inverted_index.power. | 78 |
| abstract_inverted_index.search | 164 |
| abstract_inverted_index.server | 33, 140 |
| abstract_inverted_index.sides. | 141 |
| abstract_inverted_index.space. | 165 |
| abstract_inverted_index.tuning | 49, 145 |
| abstract_inverted_index.Despite | 45 |
| abstract_inverted_index.Non-IID | 181 |
| abstract_inverted_index.Similar | 23 |
| abstract_inverted_index.address | 115 |
| abstract_inverted_index.because | 66 |
| abstract_inverted_index.broader | 162 |
| abstract_inverted_index.clients | 13 |
| abstract_inverted_index.complex | 175 |
| abstract_inverted_index.employs | 122, 148 |
| abstract_inverted_index.limited | 75, 91 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.method, | 189 |
| abstract_inverted_index.methods | 55, 197 |
| abstract_inverted_index.propose | 103 |
| abstract_inverted_index.results | 58 |
| abstract_inverted_index.various | 132 |
| abstract_inverted_index.without | 18 |
| abstract_inverted_index.Compared | 142 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.employed | 60 |
| abstract_inverted_index.enabling | 157 |
| abstract_inverted_index.learning | 7 |
| abstract_inverted_index.methods, | 146 |
| abstract_inverted_index.multiple | 12 |
| abstract_inverted_index.offering | 153 |
| abstract_inverted_index.optimize | 127 |
| abstract_inverted_index.problem. | 120 |
| abstract_inverted_index.proposed | 84, 188 |
| abstract_inverted_index.research | 47 |
| abstract_inverted_index.updates. | 98 |
| abstract_inverted_index.(FedPop), | 113 |
| abstract_inverted_index.Federated | 0, 109 |
| abstract_inverted_index.HP-Tuning | 86 |
| abstract_inverted_index.HP-tuning | 106, 196 |
| abstract_inverted_index.datasets, | 178 |
| abstract_inverted_index.empirical | 167 |
| abstract_inverted_index.extensive | 46 |
| abstract_inverted_index.framework | 69 |
| abstract_inverted_index.including | 179 |
| abstract_inverted_index.paradigm, | 9 |
| abstract_inverted_index.procedure | 35 |
| abstract_inverted_index.sensitive | 39 |
| abstract_inverted_index.algorithm, | 107 |
| abstract_inverted_index.algorithms | 125 |
| abstract_inverted_index.approaches | 81 |
| abstract_inverted_index.benchmarks | 173 |
| abstract_inverted_index.concurrent | 194 |
| abstract_inverted_index.efficiency | 155 |
| abstract_inverted_index.framework, | 152 |
| abstract_inverted_index.full-sized | 180 |
| abstract_inverted_index.pipelines, | 27 |
| abstract_inverted_index.real-world | 176 |
| abstract_inverted_index.selection. | 44 |
| abstract_inverted_index.suboptimal | 57 |
| abstract_inverted_index.unsuitable | 71 |
| abstract_inverted_index.validation | 168 |
| abstract_inverted_index.aggregation | 34 |
| abstract_inverted_index.centralized | 52 |
| abstract_inverted_index.challenging | 119 |
| abstract_inverted_index.computation | 77 |
| abstract_inverted_index.distributed | 5 |
| abstract_inverted_index.exploration | 159 |
| abstract_inverted_index.outperforms | 192 |
| abstract_inverted_index.ImageNet-1K, | 182 |
| abstract_inverted_index.accommodates | 131 |
| abstract_inverted_index.centralizing | 19 |
| abstract_inverted_index.conventional | 25 |
| abstract_inverted_index.demonstrates | 183 |
| abstract_inverted_index.evolutionary | 124 |
| abstract_inverted_index.optimization | 31 |
| abstract_inverted_index.computational | 154 |
| abstract_inverted_index.effectiveness | 185 |
| abstract_inverted_index.substantially | 191 |
| abstract_inverted_index.Hyperparameter | 111 |
| abstract_inverted_index.hyperparameter | 42 |
| abstract_inverted_index.collaboratively | 14 |
| abstract_inverted_index.Population-based | 110 |
| abstract_inverted_index.population-based | 123 |
| abstract_inverted_index.state-of-the-art | 195 |
| abstract_inverted_index."training-after-tuning" | 68 |
| abstract_inverted_index."tuning-while-training" | 151 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.6433121 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |