Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model prompting Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.12801
Large language models (LLMs) have become the preferred solution for many natural language processing tasks. In low-resource environments such as specialized domains, their few-shot capabilities are expected to deliver high performance. Named Entity Recognition (NER) is a critical task in information extraction that is not covered in recent LLM benchmarks. There is a need for better understanding the performance of LLMs for NER in a variety of settings including languages other than English. This study aims to evaluate generative LLMs, employed through prompt engineering, for few-shot clinical NER. %from the perspective of F1 performance and environmental impact. We compare 13 auto-regressive models using prompting and 16 masked models using fine-tuning on 14 NER datasets covering English, French and Spanish. While prompt-based auto-regressive models achieve competitive F1 for general NER, they are outperformed within the clinical domain by lighter biLSTM-CRF taggers based on masked models. Additionally, masked models exhibit lower environmental impact compared to auto-regressive models. Findings are consistent across the three languages studied, which suggests that LLM prompting is not yet suited for NER production in the clinical domain.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.12801
- https://arxiv.org/pdf/2402.12801
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392020057
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392020057Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.12801Digital Object Identifier
- Title
-
Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model promptingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-20Full publication date if available
- Authors
-
Marco Naguib, Xavier Tannier, Aurélie NévéolList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.12801Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.12801Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.12801Direct OA link when available
- Concepts
-
Computer science, Natural language processing, Shot (pellet), Speech recognition, Linguistics, Artificial intelligence, Philosophy, Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392020057 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.12801 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.12801 |
| ids.openalex | https://openalex.org/W4392020057 |
| fwci | 0.0 |
| type | preprint |
| title | Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model prompting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11710 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9879999756813049 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Biomedical Text Mining and Ontologies |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6171983480453491 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5667532682418823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| concepts[2].id | https://openalex.org/C2778344882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5021419525146484 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[2].display_name | Shot (pellet) |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4364657998085022 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C41895202 |
| concepts[4].level | 1 |
| concepts[4].score | 0.42163020372390747 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[4].display_name | Linguistics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40368783473968506 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.05213505029678345 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.05039030313491821 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C178790620 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[8].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6171983480453491 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.5667532682418823 |
| keywords[1].display_name | Natural language processing |
| keywords[2].id | https://openalex.org/keywords/shot |
| keywords[2].score | 0.5021419525146484 |
| keywords[2].display_name | Shot (pellet) |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.4364657998085022 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/linguistics |
| keywords[4].score | 0.42163020372390747 |
| keywords[4].display_name | Linguistics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40368783473968506 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.05213505029678345 |
| keywords[6].display_name | Philosophy |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.05039030313491821 |
| keywords[7].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.12801 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.12801 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.12801 |
| locations[1].id | doi:10.48550/arxiv.2402.12801 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.12801 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092179825 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-2950-8852 |
| authorships[0].author.display_name | Marco Naguib |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Naguib, Marco |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056834851 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2452-8868 |
| authorships[1].author.display_name | Xavier Tannier |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tannier, Xavier |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051307781 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aurélie Névéol |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Névéol, Aurélie |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.12801 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-22T00:00:00 |
| display_name | Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model prompting |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W2366718574, https://openalex.org/W2359774528, https://openalex.org/W4298312966, https://openalex.org/W3204019825 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.12801 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.12801 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.12801 |
| primary_location.id | pmh:oai:arXiv.org:2402.12801 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.12801 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.12801 |
| publication_date | 2024-02-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 52, 64 |
| abstract_inverted_index.13 | 99 |
| abstract_inverted_index.14 | 111 |
| abstract_inverted_index.16 | 105 |
| abstract_inverted_index.F1 | 92, 125 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.We | 97 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 39, 46, 63, 175 |
| abstract_inverted_index.is | 35, 43, 51, 168 |
| abstract_inverted_index.of | 59, 66, 91 |
| abstract_inverted_index.on | 110, 141 |
| abstract_inverted_index.to | 27, 76, 152 |
| abstract_inverted_index.LLM | 48, 166 |
| abstract_inverted_index.NER | 62, 112, 173 |
| abstract_inverted_index.and | 94, 104, 117 |
| abstract_inverted_index.are | 25, 130, 156 |
| abstract_inverted_index.for | 9, 54, 61, 84, 126, 172 |
| abstract_inverted_index.not | 44, 169 |
| abstract_inverted_index.the | 6, 57, 89, 133, 159, 176 |
| abstract_inverted_index.yet | 170 |
| abstract_inverted_index.LLMs | 60 |
| abstract_inverted_index.NER, | 128 |
| abstract_inverted_index.NER. | 87 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.aims | 75 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 29 |
| abstract_inverted_index.many | 10 |
| abstract_inverted_index.need | 53 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.task | 38 |
| abstract_inverted_index.than | 71 |
| abstract_inverted_index.that | 42, 165 |
| abstract_inverted_index.they | 129 |
| abstract_inverted_index.%from | 88 |
| abstract_inverted_index.(NER) | 34 |
| abstract_inverted_index.LLMs, | 79 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.Named | 31 |
| abstract_inverted_index.There | 50 |
| abstract_inverted_index.While | 119 |
| abstract_inverted_index.based | 140 |
| abstract_inverted_index.lower | 148 |
| abstract_inverted_index.other | 70 |
| abstract_inverted_index.study | 74 |
| abstract_inverted_index.their | 22 |
| abstract_inverted_index.three | 160 |
| abstract_inverted_index.using | 102, 108 |
| abstract_inverted_index.which | 163 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Entity | 32 |
| abstract_inverted_index.French | 116 |
| abstract_inverted_index.across | 158 |
| abstract_inverted_index.become | 5 |
| abstract_inverted_index.better | 55 |
| abstract_inverted_index.domain | 135 |
| abstract_inverted_index.impact | 150 |
| abstract_inverted_index.masked | 106, 142, 145 |
| abstract_inverted_index.models | 2, 101, 107, 122, 146 |
| abstract_inverted_index.prompt | 82 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.suited | 171 |
| abstract_inverted_index.tasks. | 14 |
| abstract_inverted_index.within | 132 |
| abstract_inverted_index.achieve | 123 |
| abstract_inverted_index.compare | 98 |
| abstract_inverted_index.covered | 45 |
| abstract_inverted_index.deliver | 28 |
| abstract_inverted_index.domain. | 178 |
| abstract_inverted_index.exhibit | 147 |
| abstract_inverted_index.general | 127 |
| abstract_inverted_index.impact. | 96 |
| abstract_inverted_index.lighter | 137 |
| abstract_inverted_index.models. | 143, 154 |
| abstract_inverted_index.natural | 11 |
| abstract_inverted_index.taggers | 139 |
| abstract_inverted_index.through | 81 |
| abstract_inverted_index.variety | 65 |
| abstract_inverted_index.English, | 115 |
| abstract_inverted_index.English. | 72 |
| abstract_inverted_index.Findings | 155 |
| abstract_inverted_index.Spanish. | 118 |
| abstract_inverted_index.clinical | 86, 134, 177 |
| abstract_inverted_index.compared | 151 |
| abstract_inverted_index.covering | 114 |
| abstract_inverted_index.critical | 37 |
| abstract_inverted_index.datasets | 113 |
| abstract_inverted_index.domains, | 21 |
| abstract_inverted_index.employed | 80 |
| abstract_inverted_index.evaluate | 77 |
| abstract_inverted_index.expected | 26 |
| abstract_inverted_index.few-shot | 23, 85 |
| abstract_inverted_index.language | 1, 12 |
| abstract_inverted_index.settings | 67 |
| abstract_inverted_index.solution | 8 |
| abstract_inverted_index.studied, | 162 |
| abstract_inverted_index.suggests | 164 |
| abstract_inverted_index.including | 68 |
| abstract_inverted_index.languages | 69, 161 |
| abstract_inverted_index.preferred | 7 |
| abstract_inverted_index.prompting | 103, 167 |
| abstract_inverted_index.biLSTM-CRF | 138 |
| abstract_inverted_index.consistent | 157 |
| abstract_inverted_index.extraction | 41 |
| abstract_inverted_index.generative | 78 |
| abstract_inverted_index.processing | 13 |
| abstract_inverted_index.production | 174 |
| abstract_inverted_index.Recognition | 33 |
| abstract_inverted_index.benchmarks. | 49 |
| abstract_inverted_index.competitive | 124 |
| abstract_inverted_index.fine-tuning | 109 |
| abstract_inverted_index.information | 40 |
| abstract_inverted_index.performance | 58, 93 |
| abstract_inverted_index.perspective | 90 |
| abstract_inverted_index.specialized | 20 |
| abstract_inverted_index.capabilities | 24 |
| abstract_inverted_index.engineering, | 83 |
| abstract_inverted_index.environments | 17 |
| abstract_inverted_index.low-resource | 16 |
| abstract_inverted_index.outperformed | 131 |
| abstract_inverted_index.performance. | 30 |
| abstract_inverted_index.prompt-based | 120 |
| abstract_inverted_index.Additionally, | 144 |
| abstract_inverted_index.environmental | 95, 149 |
| abstract_inverted_index.understanding | 56 |
| abstract_inverted_index.auto-regressive | 100, 121, 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |