Few-Shot Image Classification via Mutual Distillation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app132413284
Due to their compelling performance and appealing simplicity, metric-based meta-learning approaches are gaining increasing attention for addressing the challenges of few-shot image classification. However, many similar methods employ intricate network architectures, which can potentially lead to overfitting when trained with limited samples. To tackle this concern, we propose using mutual distillation to enhance metric-based meta-learning, effectively bolstering model generalization. Specifically, our approach involves two individual metric-based networks, such as prototypical networks and relational networks, mutually supplying each other with a regularization term. This method seamlessly integrates with any metric-based meta-learning approach. We undertake comprehensive experiments on two prevalent few-shot classification benchmarks, namely miniImageNet and Caltech-UCSD Birds-200-2011 (CUB), to demonstrate the effectiveness of our proposed algorithm. The results demonstrate that our method efficiently enhances each metric-based model through mutual distillation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app132413284
- https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703
- OA Status
- gold
- Cited By
- 1
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389783264
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389783264Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app132413284Digital Object Identifier
- Title
-
Few-Shot Image Classification via Mutual DistillationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-15Full publication date if available
- Authors
-
T Zhang, Wenwen Dai, Zhiyu Chen, Sai Yang, Fan Liu, Hao ZhengList of authors in order
- Landing page
-
https://doi.org/10.3390/app132413284Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703Direct OA link when available
- Concepts
-
Overfitting, Computer science, Metric (unit), Artificial intelligence, Machine learning, Generalization, Distillation, Regularization (linguistics), Pattern recognition (psychology), Data mining, Mathematics, Artificial neural network, Engineering, Operations management, Organic chemistry, Chemistry, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389783264 |
|---|---|
| doi | https://doi.org/10.3390/app132413284 |
| ids.doi | https://doi.org/10.3390/app132413284 |
| ids.openalex | https://openalex.org/W4389783264 |
| fwci | 0.25544289 |
| type | article |
| title | Few-Shot Image Classification via Mutual Distillation |
| biblio.issue | 24 |
| biblio.volume | 13 |
| biblio.last_page | 13284 |
| biblio.first_page | 13284 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9799000024795532 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7711749076843262 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7396880388259888 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C176217482 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6851704716682434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[2].display_name | Metric (unit) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6817634105682373 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6593299508094788 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C177148314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5818189978599548 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[5].display_name | Generalization |
| concepts[6].id | https://openalex.org/C204030448 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4510875344276428 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[6].display_name | Distillation |
| concepts[7].id | https://openalex.org/C2776135515 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42544180154800415 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[7].display_name | Regularization (linguistics) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.37604451179504395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34237462282180786 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17254555225372314 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.1577269434928894 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08951586484909058 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C21547014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[13].display_name | Operations management |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.7711749076843262 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7396880388259888 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/metric |
| keywords[2].score | 0.6851704716682434 |
| keywords[2].display_name | Metric (unit) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6817634105682373 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6593299508094788 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/generalization |
| keywords[5].score | 0.5818189978599548 |
| keywords[5].display_name | Generalization |
| keywords[6].id | https://openalex.org/keywords/distillation |
| keywords[6].score | 0.4510875344276428 |
| keywords[6].display_name | Distillation |
| keywords[7].id | https://openalex.org/keywords/regularization |
| keywords[7].score | 0.42544180154800415 |
| keywords[7].display_name | Regularization (linguistics) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.37604451179504395 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.34237462282180786 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.17254555225372314 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.1577269434928894 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.08951586484909058 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/app132413284 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app132413284 |
| locations[1].id | pmh:oai:doaj.org/article:c8c3cd6c32294144a9d2285163268c04 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 24, p 13284 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/c8c3cd6c32294144a9d2285163268c04 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5011389813 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-3008-0334 |
| authorships[0].author.display_name | T Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[0].institutions[0].id | https://openalex.org/I163340411 |
| authorships[0].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hohai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianshu Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[1].author.id | https://openalex.org/A5101398753 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6533-9513 |
| authorships[1].author.display_name | Wenwen Dai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[1].institutions[0].id | https://openalex.org/I163340411 |
| authorships[1].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hohai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenwen Dai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[2].author.id | https://openalex.org/A5100625998 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7937-642X |
| authorships[2].author.display_name | Zhiyu Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[2].institutions[0].id | https://openalex.org/I163340411 |
| authorships[2].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hohai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhiyu Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[3].author.id | https://openalex.org/A5018598136 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3256-7306 |
| authorships[3].author.display_name | Sai Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Nantong University, Nantong 226019, China |
| authorships[3].institutions[0].id | https://openalex.org/I199305430 |
| authorships[3].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nantong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sai Yang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering, Nantong University, Nantong 226019, China |
| authorships[4].author.id | https://openalex.org/A5100371024 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8746-9845 |
| authorships[4].author.display_name | Fan Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[4].institutions[0].id | https://openalex.org/I163340411 |
| authorships[4].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hohai University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fan Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 210024, China |
| authorships[5].author.id | https://openalex.org/A5085132445 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0829-9660 |
| authorships[5].author.display_name | Hao Zheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210128418 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Intelligent Information Processing, Nanjing Xiaozhuang University, Nanjing 211171, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210128418 |
| authorships[5].institutions[0].ror | https://ror.org/03fnv7n42 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210128418 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing Xiaozhuang University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hao Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Intelligent Information Processing, Nanjing Xiaozhuang University, Nanjing 211171, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Few-Shot Image Classification via Mutual Distillation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W1574414179, https://openalex.org/W4362597605, https://openalex.org/W3009056573, https://openalex.org/W2922073769, https://openalex.org/W4297676672, https://openalex.org/W4281702477, https://openalex.org/W4378510483, https://openalex.org/W2075445622, https://openalex.org/W3016498020, https://openalex.org/W3089944807 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app132413284 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app132413284 |
| primary_location.id | doi:10.3390/app132413284 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/24/13284/pdf?version=1702644703 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app132413284 |
| publication_date | 2023-12-15 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6684191040, https://openalex.org/W2194775991, https://openalex.org/W3019704403, https://openalex.org/W6681968150, https://openalex.org/W2604763608, https://openalex.org/W3093143829, https://openalex.org/W6778495022, https://openalex.org/W3091905774, https://openalex.org/W6717697761, https://openalex.org/W2964105864, https://openalex.org/W2949879676, https://openalex.org/W2940256401, https://openalex.org/W3034368386, https://openalex.org/W2973039928, https://openalex.org/W3035143213, https://openalex.org/W3097019284, https://openalex.org/W2979689312, https://openalex.org/W3034587791, https://openalex.org/W3097643695, https://openalex.org/W3012255272, https://openalex.org/W2620998106, https://openalex.org/W2117539524, https://openalex.org/W2804529069, https://openalex.org/W2791172704, https://openalex.org/W6783825419, https://openalex.org/W2963350370, https://openalex.org/W2969181591, https://openalex.org/W2991559096, https://openalex.org/W3134318682, https://openalex.org/W2904218366, https://openalex.org/W3175609671, https://openalex.org/W3035370595, https://openalex.org/W6743661861, https://openalex.org/W2163605009, https://openalex.org/W2963341924, https://openalex.org/W3138154797, https://openalex.org/W3092824172 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 79 |
| abstract_inverted_index.To | 42 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.of | 19, 111 |
| abstract_inverted_index.on | 95 |
| abstract_inverted_index.to | 1, 35, 51, 107 |
| abstract_inverted_index.we | 46 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.The | 115 |
| abstract_inverted_index.and | 5, 71, 103 |
| abstract_inverted_index.any | 87 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.our | 60, 112, 119 |
| abstract_inverted_index.the | 17, 109 |
| abstract_inverted_index.two | 63, 96 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.each | 76, 123 |
| abstract_inverted_index.lead | 34 |
| abstract_inverted_index.many | 24 |
| abstract_inverted_index.such | 67 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.when | 37 |
| abstract_inverted_index.with | 39, 78, 86 |
| abstract_inverted_index.image | 21 |
| abstract_inverted_index.model | 57, 125 |
| abstract_inverted_index.other | 77 |
| abstract_inverted_index.term. | 81 |
| abstract_inverted_index.their | 2 |
| abstract_inverted_index.using | 48 |
| abstract_inverted_index.which | 31 |
| abstract_inverted_index.(CUB), | 106 |
| abstract_inverted_index.employ | 27 |
| abstract_inverted_index.method | 83, 120 |
| abstract_inverted_index.mutual | 49, 127 |
| abstract_inverted_index.namely | 101 |
| abstract_inverted_index.tackle | 43 |
| abstract_inverted_index.enhance | 52 |
| abstract_inverted_index.gaining | 12 |
| abstract_inverted_index.limited | 40 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.network | 29 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.similar | 25 |
| abstract_inverted_index.through | 126 |
| abstract_inverted_index.trained | 38 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.approach | 61 |
| abstract_inverted_index.concern, | 45 |
| abstract_inverted_index.enhances | 122 |
| abstract_inverted_index.few-shot | 20, 98 |
| abstract_inverted_index.involves | 62 |
| abstract_inverted_index.mutually | 74 |
| abstract_inverted_index.networks | 70 |
| abstract_inverted_index.proposed | 113 |
| abstract_inverted_index.samples. | 41 |
| abstract_inverted_index.appealing | 6 |
| abstract_inverted_index.approach. | 90 |
| abstract_inverted_index.attention | 14 |
| abstract_inverted_index.intricate | 28 |
| abstract_inverted_index.networks, | 66, 73 |
| abstract_inverted_index.prevalent | 97 |
| abstract_inverted_index.supplying | 75 |
| abstract_inverted_index.undertake | 92 |
| abstract_inverted_index.addressing | 16 |
| abstract_inverted_index.algorithm. | 114 |
| abstract_inverted_index.approaches | 10 |
| abstract_inverted_index.bolstering | 56 |
| abstract_inverted_index.challenges | 18 |
| abstract_inverted_index.compelling | 3 |
| abstract_inverted_index.increasing | 13 |
| abstract_inverted_index.individual | 64 |
| abstract_inverted_index.integrates | 85 |
| abstract_inverted_index.relational | 72 |
| abstract_inverted_index.seamlessly | 84 |
| abstract_inverted_index.benchmarks, | 100 |
| abstract_inverted_index.demonstrate | 108, 117 |
| abstract_inverted_index.effectively | 55 |
| abstract_inverted_index.efficiently | 121 |
| abstract_inverted_index.experiments | 94 |
| abstract_inverted_index.overfitting | 36 |
| abstract_inverted_index.performance | 4 |
| abstract_inverted_index.potentially | 33 |
| abstract_inverted_index.simplicity, | 7 |
| abstract_inverted_index.Caltech-UCSD | 104 |
| abstract_inverted_index.distillation | 50 |
| abstract_inverted_index.metric-based | 8, 53, 65, 88, 124 |
| abstract_inverted_index.miniImageNet | 102 |
| abstract_inverted_index.prototypical | 69 |
| abstract_inverted_index.Specifically, | 59 |
| abstract_inverted_index.comprehensive | 93 |
| abstract_inverted_index.distillation. | 128 |
| abstract_inverted_index.effectiveness | 110 |
| abstract_inverted_index.meta-learning | 9, 89 |
| abstract_inverted_index.Birds-200-2011 | 105 |
| abstract_inverted_index.architectures, | 30 |
| abstract_inverted_index.classification | 99 |
| abstract_inverted_index.meta-learning, | 54 |
| abstract_inverted_index.regularization | 80 |
| abstract_inverted_index.classification. | 22 |
| abstract_inverted_index.generalization. | 58 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5018598136 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I199305430 |
| citation_normalized_percentile.value | 0.61307448 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |