FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.10072
The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptive annotations of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods fail to yield user-friendly and explainable results, hindering the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and its corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Based on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing model robustness. Extensive experiments demonstrate that our method not only provides user-friendly and explainable results but also significantly boosts accuracy and robustness compared to previous methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.10072
- https://arxiv.org/pdf/2408.10072
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402502665
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402502665Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.10072Digital Object Identifier
- Title
-
FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis AssistantWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-19Full publication date if available
- Authors
-
Zhengchao Huang, Bin Xia, Zicheng Lin, Zhun Mou, Wenming YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.10072Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.10072Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.10072Direct OA link when available
- Concepts
-
Face (sociological concept), Computer science, Artificial intelligence, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402502665 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.10072 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.10072 |
| ids.openalex | https://openalex.org/W4402502665 |
| fwci | |
| type | preprint |
| title | FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9833999872207642 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779304628 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6635041236877441 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[0].display_name | Face (sociological concept) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6062375903129578 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3901386260986328 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41895202 |
| concepts[3].level | 1 |
| concepts[3].score | 0.28806012868881226 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[3].display_name | Linguistics |
| concepts[4].id | https://openalex.org/C138885662 |
| concepts[4].level | 0 |
| concepts[4].score | 0.09068873524665833 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[4].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/face |
| keywords[0].score | 0.6635041236877441 |
| keywords[0].display_name | Face (sociological concept) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6062375903129578 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3901386260986328 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/linguistics |
| keywords[3].score | 0.28806012868881226 |
| keywords[3].display_name | Linguistics |
| keywords[4].id | https://openalex.org/keywords/philosophy |
| keywords[4].score | 0.09068873524665833 |
| keywords[4].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.10072 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.10072 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.10072 |
| locations[1].id | doi:10.48550/arxiv.2408.10072 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.10072 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114085829 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhengchao Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Zhengchao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101788703 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8364-5549 |
| authorships[1].author.display_name | Bin Xia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xia, Bin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100589969 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zicheng Lin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Zicheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113380976 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhun Mou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mou, Zhun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026184280 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2506-1286 |
| authorships[4].author.display_name | Wenming Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Wenming |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.10072 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | FFAA: Multimodal Large Language Model based Explainable Open-World Face Forgery Analysis Assistant |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9833999872207642 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.10072 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.10072 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.10072 |
| primary_location.id | pmh:oai:arXiv.org:2408.10072 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.10072 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.10072 |
| publication_date | 2024-08-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 97, 117, 120, 149 |
| abstract_inverted_index.By | 162 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.To | 91, 110 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.is | 174 |
| abstract_inverted_index.it | 53 |
| abstract_inverted_index.of | 3, 49, 86, 123, 148, 170 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 19, 57, 77, 201 |
| abstract_inverted_index.we | 95, 114, 140 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.VQA | 103 |
| abstract_inverted_index.and | 26, 33, 61, 80, 106, 125, 132, 156, 190, 198 |
| abstract_inverted_index.but | 193 |
| abstract_inverted_index.for | 40, 55 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 107 |
| abstract_inverted_index.not | 186 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.the | 24, 84, 87, 168 |
| abstract_inverted_index.Face | 100, 143 |
| abstract_inverted_index.also | 194 |
| abstract_inverted_index.amid | 68 |
| abstract_inverted_index.face | 13, 41, 127 |
| abstract_inverted_index.fail | 76 |
| abstract_inverted_index.lack | 46 |
| abstract_inverted_index.only | 65, 187 |
| abstract_inverted_index.pose | 37 |
| abstract_inverted_index.real | 60, 124 |
| abstract_inverted_index.task | 105 |
| abstract_inverted_index.that | 183 |
| abstract_inverted_index.this | 112, 138 |
| abstract_inverted_index.with | 129, 166 |
| abstract_inverted_index.Based | 136 |
| abstract_inverted_index.FFAA: | 142 |
| abstract_inverted_index.Large | 152 |
| abstract_inverted_index.MIDS, | 167 |
| abstract_inverted_index.Model | 154 |
| abstract_inverted_index.faces | 63 |
| abstract_inverted_index.first | 115 |
| abstract_inverted_index.fuzzy | 171 |
| abstract_inverted_index.model | 178 |
| abstract_inverted_index.novel | 98 |
| abstract_inverted_index.poses | 15 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.task, | 113 |
| abstract_inverted_index.these | 50, 93 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.yield | 78 |
| abstract_inverted_index.(MLLM) | 155 |
| abstract_inverted_index.System | 160 |
| abstract_inverted_index.boosts | 196 |
| abstract_inverted_index.facial | 31 |
| abstract_inverted_index.forged | 62, 126 |
| abstract_inverted_index.images | 128 |
| abstract_inverted_index.impact | 169 |
| abstract_inverted_index.making | 52 |
| abstract_inverted_index.method | 185 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.public | 9, 20 |
| abstract_inverted_index.tackle | 111 |
| abstract_inverted_index.threat | 18 |
| abstract_inverted_index.varied | 30 |
| abstract_inverted_index.visual | 66 |
| abstract_inverted_index.(MIDS). | 161 |
| abstract_inverted_index.Forgery | 101, 144 |
| abstract_inverted_index.address | 92 |
| abstract_inverted_index.between | 59 |
| abstract_inverted_index.complex | 34 |
| abstract_inverted_index.dataset | 118 |
| abstract_inverted_index.diverse | 27, 121 |
| abstract_inverted_index.factors | 36 |
| abstract_inverted_index.forgery | 14, 28, 42, 134 |
| abstract_inverted_index.methods | 75 |
| abstract_inverted_index.model's | 88 |
| abstract_inverted_index.prompts | 165 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.serious | 17 |
| abstract_inverted_index.sparked | 7 |
| abstract_inverted_index.unknown | 25 |
| abstract_inverted_index.various | 69 |
| abstract_inverted_index.Analysis | 102, 145 |
| abstract_inverted_index.Decision | 159 |
| abstract_inverted_index.Existing | 44 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.Language | 153 |
| abstract_inverted_index.accuracy | 197 |
| abstract_inverted_index.aspects, | 51 |
| abstract_inverted_index.compared | 200 |
| abstract_inverted_index.concern, | 10 |
| abstract_inverted_index.dataset, | 139 |
| abstract_inverted_index.datasets | 45 |
| abstract_inverted_index.deepfake | 4 |
| abstract_inverted_index.existing | 74 |
| abstract_inverted_index.factors. | 71 |
| abstract_inverted_index.features | 32 |
| abstract_inverted_index.methods. | 203 |
| abstract_inverted_index.previous | 202 |
| abstract_inverted_index.process. | 90 |
| abstract_inverted_index.provides | 188 |
| abstract_inverted_index.reliable | 133 |
| abstract_inverted_index.results, | 82 |
| abstract_inverted_index.Extensive | 180 |
| abstract_inverted_index.addition, | 73 |
| abstract_inverted_index.analysis. | 43 |
| abstract_inverted_index.difficult | 54 |
| abstract_inverted_index.enhancing | 177 |
| abstract_inverted_index.essential | 130 |
| abstract_inverted_index.establish | 116 |
| abstract_inverted_index.featuring | 119 |
| abstract_inverted_index.hindering | 83 |
| abstract_inverted_index.introduce | 96, 141 |
| abstract_inverted_index.security. | 22 |
| abstract_inverted_index.Assistant, | 146 |
| abstract_inverted_index.Multimodal | 151 |
| abstract_inverted_index.Open-World | 99 |
| abstract_inverted_index.benchmark. | 109 |
| abstract_inverted_index.boundaries | 173 |
| abstract_inverted_index.challenges | 39 |
| abstract_inverted_index.collection | 122 |
| abstract_inverted_index.consisting | 147 |
| abstract_inverted_index.fine-tuned | 150 |
| abstract_inverted_index.mitigated, | 176 |
| abstract_inverted_index.reasoning. | 135 |
| abstract_inverted_index.robustness | 199 |
| abstract_inverted_index.widespread | 8 |
| abstract_inverted_index.Intelligent | 158 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.annotations | 48 |
| abstract_inverted_index.challenges, | 94 |
| abstract_inverted_index.confounding | 70 |
| abstract_inverted_index.demonstrate | 182 |
| abstract_inverted_index.descriptive | 47 |
| abstract_inverted_index.distinguish | 58 |
| abstract_inverted_index.effectively | 175 |
| abstract_inverted_index.experiments | 181 |
| abstract_inverted_index.explainable | 81, 191 |
| abstract_inverted_index.information | 21, 67 |
| abstract_inverted_index.integrating | 163 |
| abstract_inverted_index.robustness. | 179 |
| abstract_inverted_index.significant | 38 |
| abstract_inverted_index.techniques, | 29 |
| abstract_inverted_index.(OW-FFA-VQA) | 104 |
| abstract_inverted_index.Multi-answer | 157 |
| abstract_inverted_index.descriptions | 131 |
| abstract_inverted_index.hypothetical | 164 |
| abstract_inverted_index.particularly | 11 |
| abstract_inverted_index.technologies | 5 |
| abstract_inverted_index.corresponding | 108 |
| abstract_inverted_index.environmental | 35 |
| abstract_inverted_index.significantly | 195 |
| abstract_inverted_index.understanding | 85 |
| abstract_inverted_index.user-friendly | 79, 189 |
| abstract_inverted_index.classification | 172 |
| abstract_inverted_index.decision-making | 89 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |