FHIR-Former: enhancing clinical predictions through Fast Healthcare Interoperability Resources and large language models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/jamia/ocaf165
Objective To address the challenges of data heterogeneity and manual feature engineering in clinical predictive modeling, we introduce FHIR-Former, an open-source framework integrating Fast Healthcare Interoperability Resources (FHIR) with large language models (LLMs) to automate and standardize clinical prediction tasks. Materials and Methods FHIR-Former dynamically processes structured (eg, lab results, medications) and unstructured (eg, clinical notes) data from FHIR resources. The pipeline supports multiple classification tasks, including 30-day readmission, imaging study prediction, and ICD code classification. Leveraging open-source LLMs (GeBERTa), we trained models on 1.1 million data points across ten FHIR resources using retrospective inpatient data (2018-2024). Hyperparameters were optimized via Bayesian methods, and outputs were mapped to FHIR RiskAssessment resources for interoperability. Results FHIR-Former achieved an F1-score of 70.7% and accuracy of 72.9% for 30-day readmission, 51.8% F1-score (88.1% accuracy) for mortality prediction, and 61% macro F1-score for imaging study classification. The ICD code prediction model attained 94% accuracy. Performance demonstrated promising performance for readmission and showed scalability across tasks without manual feature engineering. Discussion FHIR-Former eliminates institution-specific preprocessing by adapting to diverse FHIR implementations, enabling seamless integration of multimodal data. Its configurable architecture outperformed prior frameworks reliant on static inputs or limited to unstructured text. Real-time risk scores embedded in FHIR servers enhance clinical workflows without disrupting existing practices. Conclusion By harmonizing FHIR standardization with LLM flexibility, FHIR-Former advances scalable, interoperable predictive modeling in healthcare. The open-source framework facilitates automation, improves resource allocation, and supports personalized decision-making, bridging gaps between AI innovation and clinical practice.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamia/ocaf165
- https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 22
- OpenAlex ID
- https://openalex.org/W4415126726
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415126726Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamia/ocaf165Digital Object Identifier
- Title
-
FHIR-Former: enhancing clinical predictions through Fast Healthcare Interoperability Resources and large language modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-16Full publication date if available
- Authors
-
Merlin Engelke, Giulia Baldini, Jens Kleesiek, Felix Nensa, Amin DadaList of authors in order
- Landing page
-
https://doi.org/10.1093/jamia/ocaf165Publisher landing page
- PDF URL
-
https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdfDirect OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415126726 |
|---|---|
| doi | https://doi.org/10.1093/jamia/ocaf165 |
| ids.doi | https://doi.org/10.1093/jamia/ocaf165 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41082356 |
| ids.openalex | https://openalex.org/W4415126726 |
| fwci | 4.81974515 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000073892 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Health Information Interoperability |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057286 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Electronic Health Records |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001499 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Bayes Theorem |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D010359 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Patient Readmission |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012189 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Retrospective Studies |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011381 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Programming Languages |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D009323 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Natural Language Processing |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000098342 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Large Language Models |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000073892 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Health Information Interoperability |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D057286 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Electronic Health Records |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D001499 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Bayes Theorem |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D010359 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Patient Readmission |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012189 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Retrospective Studies |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011381 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Programming Languages |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D009323 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Natural Language Processing |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000098342 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Large Language Models |
| type | article |
| title | FHIR-Former: enhancing clinical predictions through Fast Healthcare Interoperability Resources and large language models |
| biblio.issue | 12 |
| biblio.volume | 32 |
| biblio.last_page | 1801 |
| biblio.first_page | 1793 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9815000295639038 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list.value | 3967 |
| apc_list.currency | USD |
| apc_list.value_usd | 3967 |
| apc_paid.value | 3967 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3967 |
| language | en |
| locations[0].id | doi:10.1093/jamia/ocaf165 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S129839026 |
| locations[0].source.issn | 1067-5027, 1527-974X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1067-5027 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Medical Informatics Association |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Medical Informatics Association |
| locations[0].landing_page_url | https://doi.org/10.1093/jamia/ocaf165 |
| locations[1].id | pmid:41082356 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the American Medical Informatics Association : JAMIA |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41082356 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5069759746 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8463-8786 |
| authorships[0].author.display_name | Merlin Engelke |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Merlin Engelke |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[1].author.id | https://openalex.org/A5067463049 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5929-0271 |
| authorships[1].author.display_name | Giulia Baldini |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giulia Baldini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[2].author.id | https://openalex.org/A5017161970 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8686-0682 |
| authorships[2].author.display_name | Jens Kleesiek |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I62318514 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Medical Faculty, University of Duisburg-Essen, Essen, 45127, Germany |
| authorships[2].affiliations[1].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, University Medicine Essen, Essen, 45131, Germany |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I200332995 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Physics, TU Dortmund University, Dortmund, 44227, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I200332995 |
| authorships[2].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | TU Dortmund University |
| authorships[2].institutions[1].id | https://openalex.org/I62318514 |
| authorships[2].institutions[1].ror | https://ror.org/04mz5ra38 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I62318514 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University of Duisburg-Essen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jens Kleesiek |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physics, TU Dortmund University, Dortmund, 44227, Germany, Faculty of Computer Science and Medical Faculty, University of Duisburg-Essen, Essen, 45127, Germany, Institute for Artificial Intelligence in Medicine, University Medicine Essen, Essen, 45131, Germany |
| authorships[3].author.id | https://openalex.org/A5088487393 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5811-7100 |
| authorships[3].author.display_name | Felix Nensa |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Felix Nensa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, 45147, Germany |
| authorships[4].author.id | https://openalex.org/A5007940140 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4016-7799 |
| authorships[4].author.display_name | Amin Dada |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, University Medicine Essen, Essen, 45131, Germany |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Amin Dada |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for Artificial Intelligence in Medicine, University Medicine Essen, Essen, 45131, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | FHIR-Former: enhancing clinical predictions through Fast Healthcare Interoperability Resources and large language models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-27T01:12:40.094763 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/jamia/ocaf165 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S129839026 |
| best_oa_location.source.issn | 1067-5027, 1527-974X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1067-5027 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the American Medical Informatics Association |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the American Medical Informatics Association |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jamia/ocaf165 |
| primary_location.id | doi:10.1093/jamia/ocaf165 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S129839026 |
| primary_location.source.issn | 1067-5027, 1527-974X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1067-5027 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Medical Informatics Association |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocaf165/64660809/ocaf165.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Medical Informatics Association |
| primary_location.landing_page_url | https://doi.org/10.1093/jamia/ocaf165 |
| publication_date | 2025-09-16 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3107309763, https://openalex.org/W4379769651, https://openalex.org/W2923546398, https://openalex.org/W3176016422, https://openalex.org/W2943162041, https://openalex.org/W2161299495, https://openalex.org/W2277786047, https://openalex.org/W3187888585, https://openalex.org/W2784499877, https://openalex.org/W2980904865, https://openalex.org/W2884597820, https://openalex.org/W2755331297, https://openalex.org/W4285315819, https://openalex.org/W4224216642, https://openalex.org/W4391347376, https://openalex.org/W2963716420, https://openalex.org/W3106823280, https://openalex.org/W2951969182, https://openalex.org/W2086923543, https://openalex.org/W4225326659, https://openalex.org/W4379259189, https://openalex.org/W3098949126 |
| referenced_works_count | 22 |
| abstract_inverted_index.AI | 243 |
| abstract_inverted_index.By | 213 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.an | 20, 117 |
| abstract_inverted_index.by | 171 |
| abstract_inverted_index.in | 13, 202, 226 |
| abstract_inverted_index.of | 6, 119, 123, 180 |
| abstract_inverted_index.on | 84, 190 |
| abstract_inverted_index.or | 193 |
| abstract_inverted_index.to | 34, 108, 173, 195 |
| abstract_inverted_index.we | 17, 81 |
| abstract_inverted_index.1.1 | 85 |
| abstract_inverted_index.61% | 136 |
| abstract_inverted_index.94% | 149 |
| abstract_inverted_index.ICD | 74, 144 |
| abstract_inverted_index.Its | 183 |
| abstract_inverted_index.LLM | 218 |
| abstract_inverted_index.The | 61, 143, 228 |
| abstract_inverted_index.and | 9, 36, 42, 52, 73, 104, 121, 135, 157, 236, 245 |
| abstract_inverted_index.for | 112, 125, 132, 139, 155 |
| abstract_inverted_index.lab | 49 |
| abstract_inverted_index.ten | 90 |
| abstract_inverted_index.the | 4 |
| abstract_inverted_index.via | 101 |
| abstract_inverted_index.(eg, | 48, 54 |
| abstract_inverted_index.FHIR | 59, 91, 109, 175, 203, 215 |
| abstract_inverted_index.Fast | 24 |
| abstract_inverted_index.LLMs | 79 |
| abstract_inverted_index.code | 75, 145 |
| abstract_inverted_index.data | 7, 57, 87, 96 |
| abstract_inverted_index.from | 58 |
| abstract_inverted_index.gaps | 241 |
| abstract_inverted_index.risk | 199 |
| abstract_inverted_index.were | 99, 106 |
| abstract_inverted_index.with | 29, 217 |
| abstract_inverted_index.51.8% | 128 |
| abstract_inverted_index.70.7% | 120 |
| abstract_inverted_index.72.9% | 124 |
| abstract_inverted_index.data. | 182 |
| abstract_inverted_index.large | 30 |
| abstract_inverted_index.macro | 137 |
| abstract_inverted_index.model | 147 |
| abstract_inverted_index.prior | 187 |
| abstract_inverted_index.study | 71, 141 |
| abstract_inverted_index.tasks | 161 |
| abstract_inverted_index.text. | 197 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.(88.1% | 130 |
| abstract_inverted_index.(FHIR) | 28 |
| abstract_inverted_index.(LLMs) | 33 |
| abstract_inverted_index.30-day | 68, 126 |
| abstract_inverted_index.across | 89, 160 |
| abstract_inverted_index.inputs | 192 |
| abstract_inverted_index.manual | 10, 163 |
| abstract_inverted_index.mapped | 107 |
| abstract_inverted_index.models | 32, 83 |
| abstract_inverted_index.notes) | 56 |
| abstract_inverted_index.points | 88 |
| abstract_inverted_index.scores | 200 |
| abstract_inverted_index.showed | 158 |
| abstract_inverted_index.static | 191 |
| abstract_inverted_index.tasks, | 66 |
| abstract_inverted_index.tasks. | 40 |
| abstract_inverted_index.Methods | 43 |
| abstract_inverted_index.Results | 114 |
| abstract_inverted_index.address | 3 |
| abstract_inverted_index.between | 242 |
| abstract_inverted_index.diverse | 174 |
| abstract_inverted_index.enhance | 205 |
| abstract_inverted_index.feature | 11, 164 |
| abstract_inverted_index.imaging | 70, 140 |
| abstract_inverted_index.limited | 194 |
| abstract_inverted_index.million | 86 |
| abstract_inverted_index.outputs | 105 |
| abstract_inverted_index.reliant | 189 |
| abstract_inverted_index.servers | 204 |
| abstract_inverted_index.trained | 82 |
| abstract_inverted_index.without | 162, 208 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 102 |
| abstract_inverted_index.F1-score | 118, 129, 138 |
| abstract_inverted_index.accuracy | 122 |
| abstract_inverted_index.achieved | 116 |
| abstract_inverted_index.adapting | 172 |
| abstract_inverted_index.advances | 221 |
| abstract_inverted_index.attained | 148 |
| abstract_inverted_index.automate | 35 |
| abstract_inverted_index.bridging | 240 |
| abstract_inverted_index.clinical | 14, 38, 55, 206, 246 |
| abstract_inverted_index.embedded | 201 |
| abstract_inverted_index.enabling | 177 |
| abstract_inverted_index.existing | 210 |
| abstract_inverted_index.improves | 233 |
| abstract_inverted_index.language | 31 |
| abstract_inverted_index.methods, | 103 |
| abstract_inverted_index.modeling | 225 |
| abstract_inverted_index.multiple | 64 |
| abstract_inverted_index.pipeline | 62 |
| abstract_inverted_index.resource | 234 |
| abstract_inverted_index.results, | 50 |
| abstract_inverted_index.seamless | 178 |
| abstract_inverted_index.supports | 63, 237 |
| abstract_inverted_index.Materials | 41 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.Real-time | 198 |
| abstract_inverted_index.Resources | 27 |
| abstract_inverted_index.accuracy) | 131 |
| abstract_inverted_index.accuracy. | 150 |
| abstract_inverted_index.framework | 22, 230 |
| abstract_inverted_index.including | 67 |
| abstract_inverted_index.inpatient | 95 |
| abstract_inverted_index.introduce | 18 |
| abstract_inverted_index.modeling, | 16 |
| abstract_inverted_index.mortality | 133 |
| abstract_inverted_index.optimized | 100 |
| abstract_inverted_index.practice. | 247 |
| abstract_inverted_index.processes | 46 |
| abstract_inverted_index.promising | 153 |
| abstract_inverted_index.resources | 92, 111 |
| abstract_inverted_index.scalable, | 222 |
| abstract_inverted_index.workflows | 207 |
| abstract_inverted_index.(GeBERTa), | 80 |
| abstract_inverted_index.Conclusion | 212 |
| abstract_inverted_index.Discussion | 166 |
| abstract_inverted_index.Healthcare | 25 |
| abstract_inverted_index.Leveraging | 77 |
| abstract_inverted_index.challenges | 5 |
| abstract_inverted_index.disrupting | 209 |
| abstract_inverted_index.eliminates | 168 |
| abstract_inverted_index.frameworks | 188 |
| abstract_inverted_index.innovation | 244 |
| abstract_inverted_index.multimodal | 181 |
| abstract_inverted_index.practices. | 211 |
| abstract_inverted_index.prediction | 39, 146 |
| abstract_inverted_index.predictive | 15, 224 |
| abstract_inverted_index.resources. | 60 |
| abstract_inverted_index.structured | 47 |
| abstract_inverted_index.FHIR-Former | 44, 115, 167, 220 |
| abstract_inverted_index.Performance | 151 |
| abstract_inverted_index.allocation, | 235 |
| abstract_inverted_index.automation, | 232 |
| abstract_inverted_index.dynamically | 45 |
| abstract_inverted_index.engineering | 12 |
| abstract_inverted_index.facilitates | 231 |
| abstract_inverted_index.harmonizing | 214 |
| abstract_inverted_index.healthcare. | 227 |
| abstract_inverted_index.integrating | 23 |
| abstract_inverted_index.integration | 179 |
| abstract_inverted_index.open-source | 21, 78, 229 |
| abstract_inverted_index.performance | 154 |
| abstract_inverted_index.prediction, | 72, 134 |
| abstract_inverted_index.readmission | 156 |
| abstract_inverted_index.scalability | 159 |
| abstract_inverted_index.standardize | 37 |
| abstract_inverted_index.(2018-2024). | 97 |
| abstract_inverted_index.FHIR-Former, | 19 |
| abstract_inverted_index.architecture | 185 |
| abstract_inverted_index.configurable | 184 |
| abstract_inverted_index.demonstrated | 152 |
| abstract_inverted_index.engineering. | 165 |
| abstract_inverted_index.flexibility, | 219 |
| abstract_inverted_index.medications) | 51 |
| abstract_inverted_index.outperformed | 186 |
| abstract_inverted_index.personalized | 238 |
| abstract_inverted_index.readmission, | 69, 127 |
| abstract_inverted_index.unstructured | 53, 196 |
| abstract_inverted_index.heterogeneity | 8 |
| abstract_inverted_index.interoperable | 223 |
| abstract_inverted_index.preprocessing | 170 |
| abstract_inverted_index.retrospective | 94 |
| abstract_inverted_index.RiskAssessment | 110 |
| abstract_inverted_index.classification | 65 |
| abstract_inverted_index.Hyperparameters | 98 |
| abstract_inverted_index.classification. | 76, 142 |
| abstract_inverted_index.standardization | 216 |
| abstract_inverted_index.Interoperability | 26 |
| abstract_inverted_index.decision-making, | 239 |
| abstract_inverted_index.implementations, | 176 |
| abstract_inverted_index.interoperability. | 113 |
| abstract_inverted_index.institution-specific | 169 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.95918112 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |