Fig Tree-Wasp Symbiotic Coevolutionary Optimization Algorithm Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6844430/v1
The nature inspired algorithms are becoming popular due to their simplicity and wider applicability. In the recent past several such algorithms have been developed. They are mainly bio-inspired, swarm based, physics based and socio-inspired; however, the domain based on symbiotic relation between creatures is still to be explored. A novel metaheuristic optimization algorithm referred to as Fig Tree-Wasp Symbiotic Coevolutionary (FWSC) algorithm is proposed. It models the symbiotic coevolutionary relationship between fig trees and wasps. More specifically, the mating of wasps, pollinating the figs, searching for new trees for pollination and wind effect drifting of wasps are modeled in the algorithm. These phenomena help in balancing the two important aspects of exploring the search space efficiently as well as exploit the promising regions. The algorithm is successfully tested on a variety of test problems. The results are compared with existing methods and algorithms. The Wilcoxon Signed Rank Test and Friedman Test are applied for the statistical validation of the algorithm performance. The algorithm is also further applied to solve the real-world engineering problems. The performance of the FWSC underscored that the algorithm can be applied to wider variety of real-world problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6844430/v1
- OA Status
- gold
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413244067
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413244067Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6844430/v1Digital Object Identifier
- Title
-
Fig Tree-Wasp Symbiotic Coevolutionary Optimization AlgorithmWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-08Full publication date if available
- Authors
-
Anand J. Kulkarni, Isha Purnapatre, Apoorva ShastriList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6844430/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-6844430/v1Direct OA link when available
- Concepts
-
Computer science, Algorithm, Exploit, Tree (set theory), Variety (cybernetics), Evolutionary algorithm, Coevolution, Artificial intelligence, Mathematical optimization, Machine learning, Mathematics, Ecology, Biology, Mathematical analysis, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413244067 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| ids.openalex | https://openalex.org/W4413244067 |
| fwci | 0.0 |
| type | preprint |
| title | Fig Tree-Wasp Symbiotic Coevolutionary Optimization Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T10848 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9769999980926514 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Multi-Objective Optimization Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5540635585784912 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5498983860015869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C165696696 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5292729139328003 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[2].display_name | Exploit |
| concepts[3].id | https://openalex.org/C113174947 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5290728211402893 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[3].display_name | Tree (set theory) |
| concepts[4].id | https://openalex.org/C136197465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4854717552661896 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[4].display_name | Variety (cybernetics) |
| concepts[5].id | https://openalex.org/C159149176 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4597085118293762 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[5].display_name | Evolutionary algorithm |
| concepts[6].id | https://openalex.org/C33009525 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4353146553039551 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208841 |
| concepts[6].display_name | Coevolution |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.403558611869812 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35584068298339844 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34504449367523193 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2597500681877136 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C18903297 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1168779730796814 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[11].display_name | Ecology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08201327919960022 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5540635585784912 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5498983860015869 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/exploit |
| keywords[2].score | 0.5292729139328003 |
| keywords[2].display_name | Exploit |
| keywords[3].id | https://openalex.org/keywords/tree |
| keywords[3].score | 0.5290728211402893 |
| keywords[3].display_name | Tree (set theory) |
| keywords[4].id | https://openalex.org/keywords/variety |
| keywords[4].score | 0.4854717552661896 |
| keywords[4].display_name | Variety (cybernetics) |
| keywords[5].id | https://openalex.org/keywords/evolutionary-algorithm |
| keywords[5].score | 0.4597085118293762 |
| keywords[5].display_name | Evolutionary algorithm |
| keywords[6].id | https://openalex.org/keywords/coevolution |
| keywords[6].score | 0.4353146553039551 |
| keywords[6].display_name | Coevolution |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.403558611869812 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.35584068298339844 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.34504449367523193 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2597500681877136 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/ecology |
| keywords[11].score | 0.1168779730796814 |
| keywords[11].display_name | Ecology |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.08201327919960022 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6844430/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080691948 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6242-9492 |
| authorships[0].author.display_name | Anand J. Kulkarni |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088227 |
| authorships[0].affiliations[0].raw_affiliation_string | Dr Vishwanath Karad MIT World Peace University |
| authorships[0].institutions[0].id | https://openalex.org/I4210088227 |
| authorships[0].institutions[0].ror | https://ror.org/004ymxd45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210088227 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | MIT World Peace University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anand Jayant kulkarni |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dr Vishwanath Karad MIT World Peace University |
| authorships[1].author.id | https://openalex.org/A5119318813 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Isha Purnapatre |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210137090 |
| authorships[1].affiliations[0].raw_affiliation_string | Cummins College of Engineering for Women |
| authorships[1].institutions[0].id | https://openalex.org/I4210137090 |
| authorships[1].institutions[0].ror | https://ror.org/03stcpv37 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210137090, https://openalex.org/I4210141466 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Cummins (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Isha Purnapatre |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cummins College of Engineering for Women |
| authorships[2].author.id | https://openalex.org/A5015753496 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2242-1511 |
| authorships[2].author.display_name | Apoorva Shastri |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210088227 |
| authorships[2].affiliations[0].raw_affiliation_string | Dr Vishwanath Karad MIT World Peace University |
| authorships[2].institutions[0].id | https://openalex.org/I4210088227 |
| authorships[2].institutions[0].ror | https://ror.org/004ymxd45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210088227 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | MIT World Peace University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Apoorva S Shastri |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dr Vishwanath Karad MIT World Peace University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fig Tree-Wasp Symbiotic Coevolutionary Optimization Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W4312814274, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6844430/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6844430/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6844430/v1 |
| publication_date | 2025-08-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3012087746, https://openalex.org/W2306115793, https://openalex.org/W2167489714, https://openalex.org/W2007351764, https://openalex.org/W2149815769, https://openalex.org/W2135879356, https://openalex.org/W3014839469, https://openalex.org/W1985460844, https://openalex.org/W2029846254, https://openalex.org/W2034988449, https://openalex.org/W2410374249, https://openalex.org/W3216926237, https://openalex.org/W2039577332, https://openalex.org/W1975436849, https://openalex.org/W1973346115, https://openalex.org/W1984130668, https://openalex.org/W4317745930, https://openalex.org/W4391538613, https://openalex.org/W2173985512, https://openalex.org/W2768434535, https://openalex.org/W2096218963, https://openalex.org/W4311358210, https://openalex.org/W2485640884, https://openalex.org/W883434633, https://openalex.org/W2290883490, https://openalex.org/W2738900493, https://openalex.org/W2031183907, https://openalex.org/W2061438946, https://openalex.org/W2536934950, https://openalex.org/W1999284878, https://openalex.org/W2072955302, https://openalex.org/W2025500642, https://openalex.org/W2884377042, https://openalex.org/W2168081761, https://openalex.org/W1991204511, https://openalex.org/W2473526392, https://openalex.org/W2091638274, https://openalex.org/W3036112049, https://openalex.org/W4401168843 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 49 |
| abstract_inverted_index.a | 130 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.It | 65 |
| abstract_inverted_index.as | 56, 117, 119 |
| abstract_inverted_index.be | 47, 184 |
| abstract_inverted_index.in | 99, 105 |
| abstract_inverted_index.is | 44, 63, 126, 164 |
| abstract_inverted_index.of | 80, 95, 111, 132, 158, 176, 189 |
| abstract_inverted_index.on | 39, 129 |
| abstract_inverted_index.to | 9, 46, 55, 168, 186 |
| abstract_inverted_index.Fig | 57 |
| abstract_inverted_index.The | 1, 124, 135, 144, 162, 174 |
| abstract_inverted_index.and | 12, 33, 74, 91, 142, 149 |
| abstract_inverted_index.are | 5, 26, 97, 137, 152 |
| abstract_inverted_index.can | 183 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.fig | 72 |
| abstract_inverted_index.for | 86, 89, 154 |
| abstract_inverted_index.new | 87 |
| abstract_inverted_index.the | 16, 36, 67, 78, 83, 100, 107, 113, 121, 155, 159, 170, 177, 181 |
| abstract_inverted_index.two | 108 |
| abstract_inverted_index.FWSC | 178 |
| abstract_inverted_index.More | 76 |
| abstract_inverted_index.Rank | 147 |
| abstract_inverted_index.Test | 148, 151 |
| abstract_inverted_index.They | 25 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.been | 23 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.help | 104 |
| abstract_inverted_index.past | 18 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.test | 133 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.well | 118 |
| abstract_inverted_index.wind | 92 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.These | 102 |
| abstract_inverted_index.based | 32, 38 |
| abstract_inverted_index.figs, | 84 |
| abstract_inverted_index.novel | 50 |
| abstract_inverted_index.solve | 169 |
| abstract_inverted_index.space | 115 |
| abstract_inverted_index.still | 45 |
| abstract_inverted_index.swarm | 29 |
| abstract_inverted_index.their | 10 |
| abstract_inverted_index.trees | 73, 88 |
| abstract_inverted_index.wasps | 96 |
| abstract_inverted_index.wider | 13, 187 |
| abstract_inverted_index.(FWSC) | 61 |
| abstract_inverted_index.Signed | 146 |
| abstract_inverted_index.based, | 30 |
| abstract_inverted_index.domain | 37 |
| abstract_inverted_index.effect | 93 |
| abstract_inverted_index.mainly | 27 |
| abstract_inverted_index.mating | 79 |
| abstract_inverted_index.models | 66 |
| abstract_inverted_index.nature | 2 |
| abstract_inverted_index.recent | 17 |
| abstract_inverted_index.search | 114 |
| abstract_inverted_index.tested | 128 |
| abstract_inverted_index.wasps, | 81 |
| abstract_inverted_index.wasps. | 75 |
| abstract_inverted_index.applied | 153, 167, 185 |
| abstract_inverted_index.aspects | 110 |
| abstract_inverted_index.between | 42, 71 |
| abstract_inverted_index.exploit | 120 |
| abstract_inverted_index.further | 166 |
| abstract_inverted_index.methods | 141 |
| abstract_inverted_index.modeled | 98 |
| abstract_inverted_index.physics | 31 |
| abstract_inverted_index.popular | 7 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.several | 19 |
| abstract_inverted_index.variety | 131, 188 |
| abstract_inverted_index.Friedman | 150 |
| abstract_inverted_index.Wilcoxon | 145 |
| abstract_inverted_index.becoming | 6 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.drifting | 94 |
| abstract_inverted_index.existing | 140 |
| abstract_inverted_index.however, | 35 |
| abstract_inverted_index.inspired | 3 |
| abstract_inverted_index.referred | 54 |
| abstract_inverted_index.regions. | 123 |
| abstract_inverted_index.relation | 41 |
| abstract_inverted_index.Symbiotic | 59 |
| abstract_inverted_index.Tree-Wasp | 58 |
| abstract_inverted_index.algorithm | 53, 62, 125, 160, 163, 182 |
| abstract_inverted_index.balancing | 106 |
| abstract_inverted_index.creatures | 43 |
| abstract_inverted_index.explored. | 48 |
| abstract_inverted_index.exploring | 112 |
| abstract_inverted_index.important | 109 |
| abstract_inverted_index.phenomena | 103 |
| abstract_inverted_index.problems. | 134, 173, 191 |
| abstract_inverted_index.promising | 122 |
| abstract_inverted_index.proposed. | 64 |
| abstract_inverted_index.searching | 85 |
| abstract_inverted_index.symbiotic | 40, 68 |
| abstract_inverted_index.algorithm. | 101 |
| abstract_inverted_index.algorithms | 4, 21 |
| abstract_inverted_index.developed. | 24 |
| abstract_inverted_index.real-world | 171, 190 |
| abstract_inverted_index.simplicity | 11 |
| abstract_inverted_index.validation | 157 |
| abstract_inverted_index.algorithms. | 143 |
| abstract_inverted_index.efficiently | 116 |
| abstract_inverted_index.engineering | 172 |
| abstract_inverted_index.performance | 175 |
| abstract_inverted_index.pollinating | 82 |
| abstract_inverted_index.pollination | 90 |
| abstract_inverted_index.statistical | 156 |
| abstract_inverted_index.underscored | 179 |
| abstract_inverted_index.optimization | 52 |
| abstract_inverted_index.performance. | 161 |
| abstract_inverted_index.relationship | 70 |
| abstract_inverted_index.successfully | 127 |
| abstract_inverted_index.bio-inspired, | 28 |
| abstract_inverted_index.metaheuristic | 51 |
| abstract_inverted_index.specifically, | 77 |
| abstract_inverted_index.Coevolutionary | 60 |
| abstract_inverted_index.applicability. | 14 |
| abstract_inverted_index.coevolutionary | 69 |
| abstract_inverted_index.socio-inspired; | 34 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.15959622 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |