Filtering Discomforting Recommendations with Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.05411
Personalized algorithms can inadvertently expose users to discomforting recommendations, potentially triggering negative consequences. The subjectivity of discomfort and the black-box nature of these algorithms make it challenging to effectively identify and filter such content. To address this, we first conducted a formative study to understand users' practices and expectations regarding discomforting recommendation filtering. Then, we designed a Large Language Model (LLM)-based tool named DiscomfortFilter, which constructs an editable preference profile for a user and helps the user express filtering needs through conversation to mask discomforting preferences within the profile. Based on the edited profile, DiscomfortFilter facilitates the discomforting recommendations filtering in a plug-and-play manner, maintaining flexibility and transparency. The constructed preference profile improves LLM reasoning and simplifies user alignment, enabling a 3.8B open-source LLM to rival top commercial models in an offline proxy task. A one-week user study with 24 participants demonstrated the effectiveness of DiscomfortFilter, while also highlighting its potential impact on platform recommendation outcomes. We conclude by discussing the ongoing challenges, highlighting its relevance to broader research, assessing stakeholder impact, and outlining future research directions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.05411
- https://arxiv.org/pdf/2410.05411
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403346233
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403346233Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.05411Digital Object Identifier
- Title
-
Filtering Discomforting Recommendations with Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-07Full publication date if available
- Authors
-
Jiahao Liu, Yiyang Shao, Peng Zhang, Dongsheng Li, Hansu Gu, Chao Chen, Longzhi Du, Tun Lü, Ning GuList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.05411Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.05411Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.05411Direct OA link when available
- Concepts
-
Masking (illustration), Preference, Computer science, Information retrieval, Mathematics, Art, Statistics, Visual artsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403346233 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.05411 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.05411 |
| ids.openalex | https://openalex.org/W4403346233 |
| fwci | |
| type | preprint |
| title | Filtering Discomforting Recommendations with Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8766000270843506 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T12384 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.8468000292778015 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1406 |
| topics[1].subfield.display_name | Marketing |
| topics[1].display_name | Customer churn and segmentation |
| topics[2].id | https://openalex.org/T10637 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8212000131607056 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Clustering Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777402240 |
| concepts[0].level | 2 |
| concepts[0].score | 0.727280855178833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[0].display_name | Masking (illustration) |
| concepts[1].id | https://openalex.org/C2781249084 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6873922944068909 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[1].display_name | Preference |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4274027943611145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3656632900238037 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.11153364181518555 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C142362112 |
| concepts[5].level | 0 |
| concepts[5].score | 0.08918440341949463 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[5].display_name | Art |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.07075545191764832 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C153349607 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[7].display_name | Visual arts |
| keywords[0].id | https://openalex.org/keywords/masking |
| keywords[0].score | 0.727280855178833 |
| keywords[0].display_name | Masking (illustration) |
| keywords[1].id | https://openalex.org/keywords/preference |
| keywords[1].score | 0.6873922944068909 |
| keywords[1].display_name | Preference |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4274027943611145 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.3656632900238037 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.11153364181518555 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/art |
| keywords[5].score | 0.08918440341949463 |
| keywords[5].display_name | Art |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.07075545191764832 |
| keywords[6].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.05411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.05411 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.05411 |
| locations[1].id | doi:10.48550/arxiv.2410.05411 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.05411 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5022905969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5654-5902 |
| authorships[0].author.display_name | Jiahao Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Jiahao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113430872 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yiyang Shao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shao, YiYang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100364212 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0606-6855 |
| authorships[2].author.display_name | Peng Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Peng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100440920 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3103-8442 |
| authorships[3].author.display_name | Dongsheng Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Dongsheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071156485 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1426-3210 |
| authorships[4].author.display_name | Hansu Gu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gu, Hansu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101988909 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7587-769X |
| authorships[5].author.display_name | Chao Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Chao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5039916270 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Longzhi Du |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Du, Longzhi |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100566727 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Tun Lü |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lu, Tun |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5091087409 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2915-974X |
| authorships[8].author.display_name | Ning Gu |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Gu, Ning |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.05411 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-12T00:00:00 |
| display_name | Filtering Discomforting Recommendations with Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8766000270843506 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W4402327032, https://openalex.org/W2382290278 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.05411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.05411 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.05411 |
| primary_location.id | pmh:oai:arXiv.org:2410.05411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.05411 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.05411 |
| publication_date | 2024-10-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 134 |
| abstract_inverted_index.a | 40, 56, 71, 101, 120 |
| abstract_inverted_index.24 | 139 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.We | 156 |
| abstract_inverted_index.an | 66, 130 |
| abstract_inverted_index.by | 158 |
| abstract_inverted_index.in | 100, 129 |
| abstract_inverted_index.it | 25 |
| abstract_inverted_index.of | 15, 21, 144 |
| abstract_inverted_index.on | 90, 152 |
| abstract_inverted_index.to | 6, 27, 43, 82, 124, 166 |
| abstract_inverted_index.we | 37, 54 |
| abstract_inverted_index.LLM | 113, 123 |
| abstract_inverted_index.The | 13, 108 |
| abstract_inverted_index.and | 17, 30, 47, 73, 106, 115, 172 |
| abstract_inverted_index.can | 2 |
| abstract_inverted_index.for | 70 |
| abstract_inverted_index.its | 149, 164 |
| abstract_inverted_index.the | 18, 75, 87, 91, 96, 142, 160 |
| abstract_inverted_index.top | 126 |
| abstract_inverted_index.3.8B | 121 |
| abstract_inverted_index.also | 147 |
| abstract_inverted_index.make | 24 |
| abstract_inverted_index.mask | 83 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.tool | 61 |
| abstract_inverted_index.user | 72, 76, 117, 136 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.Based | 89 |
| abstract_inverted_index.Large | 57 |
| abstract_inverted_index.Model | 59 |
| abstract_inverted_index.Then, | 53 |
| abstract_inverted_index.first | 38 |
| abstract_inverted_index.helps | 74 |
| abstract_inverted_index.named | 62 |
| abstract_inverted_index.needs | 79 |
| abstract_inverted_index.proxy | 132 |
| abstract_inverted_index.rival | 125 |
| abstract_inverted_index.study | 42, 137 |
| abstract_inverted_index.task. | 133 |
| abstract_inverted_index.these | 22 |
| abstract_inverted_index.this, | 36 |
| abstract_inverted_index.users | 5 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.while | 146 |
| abstract_inverted_index.edited | 92 |
| abstract_inverted_index.expose | 4 |
| abstract_inverted_index.filter | 31 |
| abstract_inverted_index.future | 174 |
| abstract_inverted_index.impact | 151 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.nature | 20 |
| abstract_inverted_index.users' | 45 |
| abstract_inverted_index.within | 86 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.broader | 167 |
| abstract_inverted_index.express | 77 |
| abstract_inverted_index.impact, | 171 |
| abstract_inverted_index.manner, | 103 |
| abstract_inverted_index.offline | 131 |
| abstract_inverted_index.ongoing | 161 |
| abstract_inverted_index.profile | 69, 111 |
| abstract_inverted_index.through | 80 |
| abstract_inverted_index.Language | 58 |
| abstract_inverted_index.conclude | 157 |
| abstract_inverted_index.content. | 33 |
| abstract_inverted_index.designed | 55 |
| abstract_inverted_index.editable | 67 |
| abstract_inverted_index.enabling | 119 |
| abstract_inverted_index.identify | 29 |
| abstract_inverted_index.improves | 112 |
| abstract_inverted_index.negative | 11 |
| abstract_inverted_index.one-week | 135 |
| abstract_inverted_index.platform | 153 |
| abstract_inverted_index.profile, | 93 |
| abstract_inverted_index.profile. | 88 |
| abstract_inverted_index.research | 175 |
| abstract_inverted_index.assessing | 169 |
| abstract_inverted_index.black-box | 19 |
| abstract_inverted_index.conducted | 39 |
| abstract_inverted_index.filtering | 78, 99 |
| abstract_inverted_index.formative | 41 |
| abstract_inverted_index.outcomes. | 155 |
| abstract_inverted_index.outlining | 173 |
| abstract_inverted_index.potential | 150 |
| abstract_inverted_index.practices | 46 |
| abstract_inverted_index.reasoning | 114 |
| abstract_inverted_index.regarding | 49 |
| abstract_inverted_index.relevance | 165 |
| abstract_inverted_index.research, | 168 |
| abstract_inverted_index.algorithms | 1, 23 |
| abstract_inverted_index.alignment, | 118 |
| abstract_inverted_index.commercial | 127 |
| abstract_inverted_index.constructs | 65 |
| abstract_inverted_index.discomfort | 16 |
| abstract_inverted_index.discussing | 159 |
| abstract_inverted_index.filtering. | 52 |
| abstract_inverted_index.preference | 68, 110 |
| abstract_inverted_index.simplifies | 116 |
| abstract_inverted_index.triggering | 10 |
| abstract_inverted_index.understand | 44 |
| abstract_inverted_index.(LLM)-based | 60 |
| abstract_inverted_index.challenges, | 162 |
| abstract_inverted_index.challenging | 26 |
| abstract_inverted_index.constructed | 109 |
| abstract_inverted_index.directions. | 176 |
| abstract_inverted_index.effectively | 28 |
| abstract_inverted_index.facilitates | 95 |
| abstract_inverted_index.flexibility | 105 |
| abstract_inverted_index.maintaining | 104 |
| abstract_inverted_index.open-source | 122 |
| abstract_inverted_index.potentially | 9 |
| abstract_inverted_index.preferences | 85 |
| abstract_inverted_index.stakeholder | 170 |
| abstract_inverted_index.Personalized | 0 |
| abstract_inverted_index.conversation | 81 |
| abstract_inverted_index.demonstrated | 141 |
| abstract_inverted_index.expectations | 48 |
| abstract_inverted_index.highlighting | 148, 163 |
| abstract_inverted_index.participants | 140 |
| abstract_inverted_index.subjectivity | 14 |
| abstract_inverted_index.consequences. | 12 |
| abstract_inverted_index.discomforting | 7, 50, 84, 97 |
| abstract_inverted_index.effectiveness | 143 |
| abstract_inverted_index.inadvertently | 3 |
| abstract_inverted_index.plug-and-play | 102 |
| abstract_inverted_index.transparency. | 107 |
| abstract_inverted_index.recommendation | 51, 154 |
| abstract_inverted_index.recommendations | 98 |
| abstract_inverted_index.DiscomfortFilter | 94 |
| abstract_inverted_index.recommendations, | 8 |
| abstract_inverted_index.DiscomfortFilter, | 63, 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |