Financial Risk Prediction for Agricultural Enterprises Using Intelligent Modeling and Dynamic State Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.62486/agma2025179
Agricultural enterprises have financial uncertainties due to market volatility, climate disruptions, and changes in policies; therefore, farming operations must use timely and accurate forecasts, as they are particularly vulnerable to external economic shocks and environmental variability. Standard forecasting methods usually cannot capture nonlinear dependencies and dynamic shifts in risk profiles; therefore, there is a need to consider intelligent, adaptive systems. Research proposes a novel financial risk prediction model using the Sooty Tern Optimization Algorithm Attention-Based Long Short-Term Memory (STOA-Att-LSTM). Financial risk data were collected, which included agricultural enterprise financial records, national weather databases, and commodity market indices. To ensure data integrity and modelling efficiency, two essential pre-processing techniques were employed. Handling missing values was performed using linear interpolation to reconstruct incomplete sequences, particularly in time-series financial and climatic data, to standardize variables, facilitating efficient model training and convergence. The STOA algorithm was used to optimize the hyper-parameters of the Att-LSTM model, enhancing its generalization and predictive accuracy. The attention mechanism enabled the model to dynamically focus on critical time-dependent features influencing financial risk. Dynamic state analysis further strengthened the framework by capturing temporal shifts in enterprise conditions. Model evaluation using Python-based implementation of error metrics and classification accuracy (0.9899) showed better results compared to traditional and baseline deep learning (DL) models. The proposed framework offers a robust, adaptive tool for proactive financial risk assessment in agricultural enterprises, supporting sustainable decision-making in uncertain environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.62486/agma2025179
- https://managment.ageditor.uy/index.php/managment/article/download/179/504
- OA Status
- diamond
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413005818
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413005818Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.62486/agma2025179Digital Object Identifier
- Title
-
Financial Risk Prediction for Agricultural Enterprises Using Intelligent Modeling and Dynamic State AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Hemal Thakker, Amit Kumar Shrivastav, Princy AS, Ansuman Samal, Fazil Hasan, Babitha BabithaList of authors in order
- Landing page
-
https://doi.org/10.62486/agma2025179Publisher landing page
- PDF URL
-
https://managment.ageditor.uy/index.php/managment/article/download/179/504Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://managment.ageditor.uy/index.php/managment/article/download/179/504Direct OA link when available
- Concepts
-
Agriculture, State (computer science), Finance, Business, Computer science, Geography, Algorithm, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413005818 |
|---|---|
| doi | https://doi.org/10.62486/agma2025179 |
| ids.doi | https://doi.org/10.62486/agma2025179 |
| ids.openalex | https://openalex.org/W4413005818 |
| fwci | 0.0 |
| type | article |
| title | Financial Risk Prediction for Agricultural Enterprises Using Intelligent Modeling and Dynamic State Analysis |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | 179 |
| biblio.first_page | 179 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11653 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1402 |
| topics[2].subfield.display_name | Accounting |
| topics[2].display_name | Financial Distress and Bankruptcy Prediction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118518473 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6085647344589233 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[0].display_name | Agriculture |
| concepts[1].id | https://openalex.org/C48103436 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5478092432022095 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[1].display_name | State (computer science) |
| concepts[2].id | https://openalex.org/C10138342 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4215397238731384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[2].display_name | Finance |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3881028890609741 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3780549466609955 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07380995154380798 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.06607362627983093 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C166957645 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[7].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/agriculture |
| keywords[0].score | 0.6085647344589233 |
| keywords[0].display_name | Agriculture |
| keywords[1].id | https://openalex.org/keywords/state |
| keywords[1].score | 0.5478092432022095 |
| keywords[1].display_name | State (computer science) |
| keywords[2].id | https://openalex.org/keywords/finance |
| keywords[2].score | 0.4215397238731384 |
| keywords[2].display_name | Finance |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.3881028890609741 |
| keywords[3].display_name | Business |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3780549466609955 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.07380995154380798 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.06607362627983093 |
| keywords[6].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.62486/agma2025179 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404663911 |
| locations[0].source.issn | 3046-4048 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3046-4048 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Management |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://managment.ageditor.uy/index.php/managment/article/download/179/504 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Management (Montevideo) |
| locations[0].landing_page_url | https://doi.org/10.62486/agma2025179 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5107288202 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-0043-5760 |
| authorships[0].author.display_name | Hemal Thakker |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3133421068 |
| authorships[0].affiliations[0].raw_affiliation_string | ISME, ATLAS SkillTech University, Mumbai, India |
| authorships[0].institutions[0].id | https://openalex.org/I3133421068 |
| authorships[0].institutions[0].ror | https://ror.org/0093rkw25 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3133421068 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Bhartiya Skill Development University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hemal Thakker |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ISME, ATLAS SkillTech University, Mumbai, India |
| authorships[1].author.id | https://openalex.org/A5056841640 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-2984-0861 |
| authorships[1].author.display_name | Amit Kumar Shrivastav |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I106826634 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Management, ARKA JAIN University, Jamshedpur, Jharkhand, India |
| authorships[1].institutions[0].id | https://openalex.org/I106826634 |
| authorships[1].institutions[0].ror | https://ror.org/01cnqpt53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I106826634 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Jain University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amit Kumar Shrivastav |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Management, ARKA JAIN University, Jamshedpur, Jharkhand, India |
| authorships[2].author.id | https://openalex.org/A5119228155 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Princy AS |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43814544 |
| authorships[2].affiliations[0].raw_affiliation_string | Master Of Business Administration, Sathyabama Institute of Science and Technology, Chennai, India |
| authorships[2].institutions[0].id | https://openalex.org/I43814544 |
| authorships[2].institutions[0].ror | https://ror.org/01defpn95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43814544 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Sathyabama Institute of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Princy AS |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Master Of Business Administration, Sathyabama Institute of Science and Technology, Chennai, India |
| authorships[3].author.id | https://openalex.org/A5029671794 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4213-5988 |
| authorships[3].author.display_name | Ansuman Samal |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Management, Institute of Business and Computer Studies, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India |
| authorships[3].institutions[0].id | https://openalex.org/I193073490 |
| authorships[3].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ansuman Samal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Management, Institute of Business and Computer Studies, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India |
| authorships[4].author.id | https://openalex.org/A5101890891 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0621-4248 |
| authorships[4].author.display_name | Fazil Hasan |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210086299 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Agriculture, Noida International University, Greater Noida, Uttar Pradesh, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210086299 |
| authorships[4].institutions[0].ror | https://ror.org/001amd982 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210086299 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Noida International University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fazil Hasan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Agriculture, Noida International University, Greater Noida, Uttar Pradesh, India |
| authorships[5].author.id | https://openalex.org/A5097025372 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Babitha Babitha |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I106826634 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Management, Jain (Deemed to be University), Bangalore, Karnataka, India |
| authorships[5].institutions[0].id | https://openalex.org/I106826634 |
| authorships[5].institutions[0].ror | https://ror.org/01cnqpt53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I106826634 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Jain University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Babitha Babitha |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Management, Jain (Deemed to be University), Bangalore, Karnataka, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://managment.ageditor.uy/index.php/managment/article/download/179/504 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Financial Risk Prediction for Agricultural Enterprises Using Intelligent Modeling and Dynamic State Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.62486/agma2025179 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404663911 |
| best_oa_location.source.issn | 3046-4048 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3046-4048 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Management |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://managment.ageditor.uy/index.php/managment/article/download/179/504 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Management (Montevideo) |
| best_oa_location.landing_page_url | https://doi.org/10.62486/agma2025179 |
| primary_location.id | doi:10.62486/agma2025179 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404663911 |
| primary_location.source.issn | 3046-4048 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3046-4048 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Management |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://managment.ageditor.uy/index.php/managment/article/download/179/504 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Management (Montevideo) |
| primary_location.landing_page_url | https://doi.org/10.62486/agma2025179 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3176096617, https://openalex.org/W3182915064, https://openalex.org/W4410694874, https://openalex.org/W4387502393, https://openalex.org/W4385652611, https://openalex.org/W3082132558, https://openalex.org/W4379388025, https://openalex.org/W4367308454, https://openalex.org/W4393900941, https://openalex.org/W4205339155, https://openalex.org/W4225006836, https://openalex.org/W4410505690 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 53, 62, 215 |
| abstract_inverted_index.To | 97 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.by | 180 |
| abstract_inverted_index.in | 13, 47, 123, 184, 224, 230 |
| abstract_inverted_index.is | 52 |
| abstract_inverted_index.of | 147, 192 |
| abstract_inverted_index.on | 166 |
| abstract_inverted_index.to | 6, 29, 55, 118, 129, 143, 163, 203 |
| abstract_inverted_index.The | 138, 157, 211 |
| abstract_inverted_index.and | 11, 21, 33, 44, 93, 101, 126, 136, 154, 195, 205 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.due | 5 |
| abstract_inverted_index.for | 219 |
| abstract_inverted_index.its | 152 |
| abstract_inverted_index.the | 69, 145, 148, 161, 178 |
| abstract_inverted_index.two | 104 |
| abstract_inverted_index.use | 19 |
| abstract_inverted_index.was | 113, 141 |
| abstract_inverted_index.(DL) | 209 |
| abstract_inverted_index.Long | 75 |
| abstract_inverted_index.STOA | 139 |
| abstract_inverted_index.Tern | 71 |
| abstract_inverted_index.data | 81, 99 |
| abstract_inverted_index.deep | 207 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.must | 18 |
| abstract_inverted_index.need | 54 |
| abstract_inverted_index.risk | 48, 65, 80, 222 |
| abstract_inverted_index.they | 25 |
| abstract_inverted_index.tool | 218 |
| abstract_inverted_index.used | 142 |
| abstract_inverted_index.were | 82, 108 |
| abstract_inverted_index.Model | 187 |
| abstract_inverted_index.Sooty | 70 |
| abstract_inverted_index.data, | 128 |
| abstract_inverted_index.error | 193 |
| abstract_inverted_index.focus | 165 |
| abstract_inverted_index.model | 67, 134, 162 |
| abstract_inverted_index.novel | 63 |
| abstract_inverted_index.risk. | 172 |
| abstract_inverted_index.state | 174 |
| abstract_inverted_index.there | 51 |
| abstract_inverted_index.using | 68, 115, 189 |
| abstract_inverted_index.which | 84 |
| abstract_inverted_index.Memory | 77 |
| abstract_inverted_index.better | 200 |
| abstract_inverted_index.cannot | 40 |
| abstract_inverted_index.ensure | 98 |
| abstract_inverted_index.linear | 116 |
| abstract_inverted_index.market | 7, 95 |
| abstract_inverted_index.model, | 150 |
| abstract_inverted_index.offers | 214 |
| abstract_inverted_index.shifts | 46, 183 |
| abstract_inverted_index.shocks | 32 |
| abstract_inverted_index.showed | 199 |
| abstract_inverted_index.timely | 20 |
| abstract_inverted_index.values | 112 |
| abstract_inverted_index.Dynamic | 173 |
| abstract_inverted_index.capture | 41 |
| abstract_inverted_index.changes | 12 |
| abstract_inverted_index.climate | 9 |
| abstract_inverted_index.dynamic | 45 |
| abstract_inverted_index.enabled | 160 |
| abstract_inverted_index.farming | 16 |
| abstract_inverted_index.further | 176 |
| abstract_inverted_index.methods | 38 |
| abstract_inverted_index.metrics | 194 |
| abstract_inverted_index.missing | 111 |
| abstract_inverted_index.models. | 210 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.robust, | 216 |
| abstract_inverted_index.usually | 39 |
| abstract_inverted_index.weather | 91 |
| abstract_inverted_index.(0.9899) | 198 |
| abstract_inverted_index.Att-LSTM | 149 |
| abstract_inverted_index.Handling | 110 |
| abstract_inverted_index.Research | 60 |
| abstract_inverted_index.Standard | 36 |
| abstract_inverted_index.accuracy | 197 |
| abstract_inverted_index.accurate | 22 |
| abstract_inverted_index.adaptive | 58, 217 |
| abstract_inverted_index.analysis | 175 |
| abstract_inverted_index.baseline | 206 |
| abstract_inverted_index.climatic | 127 |
| abstract_inverted_index.compared | 202 |
| abstract_inverted_index.consider | 56 |
| abstract_inverted_index.critical | 167 |
| abstract_inverted_index.economic | 31 |
| abstract_inverted_index.external | 30 |
| abstract_inverted_index.features | 169 |
| abstract_inverted_index.included | 85 |
| abstract_inverted_index.indices. | 96 |
| abstract_inverted_index.learning | 208 |
| abstract_inverted_index.national | 90 |
| abstract_inverted_index.optimize | 144 |
| abstract_inverted_index.proposed | 212 |
| abstract_inverted_index.proposes | 61 |
| abstract_inverted_index.records, | 89 |
| abstract_inverted_index.systems. | 59 |
| abstract_inverted_index.temporal | 182 |
| abstract_inverted_index.training | 135 |
| abstract_inverted_index.Algorithm | 73 |
| abstract_inverted_index.Financial | 79 |
| abstract_inverted_index.accuracy. | 156 |
| abstract_inverted_index.algorithm | 140 |
| abstract_inverted_index.attention | 158 |
| abstract_inverted_index.capturing | 181 |
| abstract_inverted_index.commodity | 94 |
| abstract_inverted_index.efficient | 133 |
| abstract_inverted_index.employed. | 109 |
| abstract_inverted_index.enhancing | 151 |
| abstract_inverted_index.essential | 105 |
| abstract_inverted_index.financial | 3, 64, 88, 125, 171, 221 |
| abstract_inverted_index.framework | 179, 213 |
| abstract_inverted_index.integrity | 100 |
| abstract_inverted_index.mechanism | 159 |
| abstract_inverted_index.modelling | 102 |
| abstract_inverted_index.nonlinear | 42 |
| abstract_inverted_index.performed | 114 |
| abstract_inverted_index.policies; | 14 |
| abstract_inverted_index.proactive | 220 |
| abstract_inverted_index.profiles; | 49 |
| abstract_inverted_index.uncertain | 231 |
| abstract_inverted_index.Short-Term | 76 |
| abstract_inverted_index.assessment | 223 |
| abstract_inverted_index.collected, | 83 |
| abstract_inverted_index.databases, | 92 |
| abstract_inverted_index.enterprise | 87, 185 |
| abstract_inverted_index.evaluation | 188 |
| abstract_inverted_index.forecasts, | 23 |
| abstract_inverted_index.incomplete | 120 |
| abstract_inverted_index.operations | 17 |
| abstract_inverted_index.prediction | 66 |
| abstract_inverted_index.predictive | 155 |
| abstract_inverted_index.sequences, | 121 |
| abstract_inverted_index.supporting | 227 |
| abstract_inverted_index.techniques | 107 |
| abstract_inverted_index.therefore, | 15, 50 |
| abstract_inverted_index.variables, | 131 |
| abstract_inverted_index.vulnerable | 28 |
| abstract_inverted_index.conditions. | 186 |
| abstract_inverted_index.dynamically | 164 |
| abstract_inverted_index.efficiency, | 103 |
| abstract_inverted_index.enterprises | 1 |
| abstract_inverted_index.forecasting | 37 |
| abstract_inverted_index.influencing | 170 |
| abstract_inverted_index.reconstruct | 119 |
| abstract_inverted_index.standardize | 130 |
| abstract_inverted_index.sustainable | 228 |
| abstract_inverted_index.time-series | 124 |
| abstract_inverted_index.traditional | 204 |
| abstract_inverted_index.volatility, | 8 |
| abstract_inverted_index.Agricultural | 0 |
| abstract_inverted_index.Optimization | 72 |
| abstract_inverted_index.Python-based | 190 |
| abstract_inverted_index.agricultural | 86, 225 |
| abstract_inverted_index.convergence. | 137 |
| abstract_inverted_index.dependencies | 43 |
| abstract_inverted_index.disruptions, | 10 |
| abstract_inverted_index.enterprises, | 226 |
| abstract_inverted_index.facilitating | 132 |
| abstract_inverted_index.intelligent, | 57 |
| abstract_inverted_index.particularly | 27, 122 |
| abstract_inverted_index.strengthened | 177 |
| abstract_inverted_index.variability. | 35 |
| abstract_inverted_index.environmental | 34 |
| abstract_inverted_index.environments. | 232 |
| abstract_inverted_index.interpolation | 117 |
| abstract_inverted_index.uncertainties | 4 |
| abstract_inverted_index.classification | 196 |
| abstract_inverted_index.generalization | 153 |
| abstract_inverted_index.implementation | 191 |
| abstract_inverted_index.pre-processing | 106 |
| abstract_inverted_index.time-dependent | 168 |
| abstract_inverted_index.Attention-Based | 74 |
| abstract_inverted_index.decision-making | 229 |
| abstract_inverted_index.(STOA-Att-LSTM). | 78 |
| abstract_inverted_index.hyper-parameters | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.39276957 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |