Finding Safety Violations of AI-Enabled Control Systems through the Lens of Synthesized Proxy Programs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.04986
Given the increasing adoption of modern AI-enabled control systems, ensuring their safety and reliability has become a critical task in software testing. One prevalent approach to testing control systems is falsification, which aims to find an input signal that causes the control system to violate a formal safety specification using optimization algorithms. However, applying falsification to AI-enabled control systems poses two significant challenges: (1)~it requires the system to execute numerous candidate test inputs, which can be time-consuming, particularly for systems with AI models that have many parameters, and (2)~multiple safety requirements are typically defined as a conjunctive specification, which is difficult for existing falsification approaches to comprehensively cover. This paper introduces Synthify, a falsification framework tailored for AI-enabled control systems. Our approach performs falsification in a two-phase process. At the start, Synthify synthesizes a program that implements one or a few linear controllers to serve as a proxy for the AI controller. This proxy program mimics the AI controller's functionality but is computationally more efficient. Then, Synthify employs the $ε$-greedy strategy to sample a promising sub-specification from the conjunctive safety specification. It then uses a Simulated Annealing-based falsification algorithm to find violations of the sampled sub-specification for the control system. To evaluate Synthify, we compare it to PSY-TaLiRo, a state-of-the-art and industrial-strength falsification tool, on 8 publicly available control systems. On average, Synthify achieves a 83.5% higher success rate in falsification compared to PSY-TaLiRo with the same budget of falsification trials. The safety violations found by Synthify are also more diverse than those found by PSY-TaLiRo, covering 137.7% more sub-specifications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.04986
- https://arxiv.org/pdf/2410.04986
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403964476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403964476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.04986Digital Object Identifier
- Title
-
Finding Safety Violations of AI-Enabled Control Systems through the Lens of Synthesized Proxy ProgramsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-07Full publication date if available
- Authors
-
Jieke Shi, Zhou Yang, Junda He, Bowen Xu, Dongsun Kim, Deqiang Han, David LoList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.04986Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.04986Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.04986Direct OA link when available
- Concepts
-
Proxy (statistics), Lens (geology), Control (management), Computer science, Computer security, Business, Psychology, Engineering, Artificial intelligence, Machine learning, Petroleum engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403964476 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.04986 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.04986 |
| ids.openalex | https://openalex.org/W4403964476 |
| fwci | |
| type | preprint |
| title | Finding Safety Violations of AI-Enabled Control Systems through the Lens of Synthesized Proxy Programs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10883 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.8400999903678894 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3311 |
| topics[0].subfield.display_name | Safety Research |
| topics[0].display_name | Ethics and Social Impacts of AI |
| topics[1].id | https://openalex.org/T12423 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8046000003814697 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1712 |
| topics[1].subfield.display_name | Software |
| topics[1].display_name | Software Reliability and Analysis Research |
| topics[2].id | https://openalex.org/T10142 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7235999703407288 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Formal Methods in Verification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780148112 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8209466934204102 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1432581 |
| concepts[0].display_name | Proxy (statistics) |
| concepts[1].id | https://openalex.org/C15336307 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6134697198867798 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1766051 |
| concepts[1].display_name | Lens (geology) |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43959981203079224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38165542483329773 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C38652104 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3793265223503113 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[4].display_name | Computer security |
| concepts[5].id | https://openalex.org/C144133560 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3783532381057739 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[5].display_name | Business |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3359273672103882 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20415186882019043 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16992688179016113 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0781690776348114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C78762247 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07624387741088867 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1273174 |
| concepts[10].display_name | Petroleum engineering |
| keywords[0].id | https://openalex.org/keywords/proxy |
| keywords[0].score | 0.8209466934204102 |
| keywords[0].display_name | Proxy (statistics) |
| keywords[1].id | https://openalex.org/keywords/lens |
| keywords[1].score | 0.6134697198867798 |
| keywords[1].display_name | Lens (geology) |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.43959981203079224 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.38165542483329773 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-security |
| keywords[4].score | 0.3793265223503113 |
| keywords[4].display_name | Computer security |
| keywords[5].id | https://openalex.org/keywords/business |
| keywords[5].score | 0.3783532381057739 |
| keywords[5].display_name | Business |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3359273672103882 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.20415186882019043 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.16992688179016113 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.0781690776348114 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/petroleum-engineering |
| keywords[10].score | 0.07624387741088867 |
| keywords[10].display_name | Petroleum engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.04986 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.04986 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.04986 |
| locations[1].id | doi:10.48550/arxiv.2410.04986 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.04986 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5002667771 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0799-5018 |
| authorships[0].author.display_name | Jieke Shi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shi, Jieke |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110372666 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhou Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Zhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5082041893 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Junda He |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He, Junda |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5017169429 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0704-2241 |
| authorships[3].author.display_name | Bowen Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Bowen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067772621 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0272-6860 |
| authorships[4].author.display_name | Dongsun Kim |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kim, Dongsun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5024649502 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5603-796X |
| authorships[5].author.display_name | Deqiang Han |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Han, DongGyun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5081036622 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4367-7201 |
| authorships[6].author.display_name | David Lo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lo, David |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.04986 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Finding Safety Violations of AI-Enabled Control Systems through the Lens of Synthesized Proxy Programs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10883 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.8400999903678894 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3311 |
| primary_topic.subfield.display_name | Safety Research |
| primary_topic.display_name | Ethics and Social Impacts of AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2028495302, https://openalex.org/W4396872084, https://openalex.org/W4249498729, https://openalex.org/W2002261065, https://openalex.org/W1513656766, https://openalex.org/W1967083444, https://openalex.org/W2160863446, https://openalex.org/W2106866459, https://openalex.org/W2361609491 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.04986 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.04986 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.04986 |
| primary_location.id | pmh:oai:arXiv.org:2410.04986 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.04986 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.04986 |
| publication_date | 2024-10-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.8 | 215 |
| abstract_inverted_index.a | 16, 45, 95, 112, 125, 133, 139, 146, 173, 184, 208, 224 |
| abstract_inverted_index.AI | 81, 150, 157 |
| abstract_inverted_index.At | 128 |
| abstract_inverted_index.It | 181 |
| abstract_inverted_index.On | 220 |
| abstract_inverted_index.To | 200 |
| abstract_inverted_index.an | 35 |
| abstract_inverted_index.as | 94, 145 |
| abstract_inverted_index.be | 75 |
| abstract_inverted_index.by | 245, 254 |
| abstract_inverted_index.in | 19, 124, 229 |
| abstract_inverted_index.is | 29, 99, 161 |
| abstract_inverted_index.it | 205 |
| abstract_inverted_index.of | 4, 192, 238 |
| abstract_inverted_index.on | 214 |
| abstract_inverted_index.or | 138 |
| abstract_inverted_index.to | 25, 33, 43, 55, 67, 105, 143, 171, 189, 206, 232 |
| abstract_inverted_index.we | 203 |
| abstract_inverted_index.One | 22 |
| abstract_inverted_index.Our | 120 |
| abstract_inverted_index.The | 241 |
| abstract_inverted_index.and | 12, 87, 210 |
| abstract_inverted_index.are | 91, 247 |
| abstract_inverted_index.but | 160 |
| abstract_inverted_index.can | 74 |
| abstract_inverted_index.few | 140 |
| abstract_inverted_index.for | 78, 101, 116, 148, 196 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.one | 137 |
| abstract_inverted_index.the | 1, 40, 65, 129, 149, 156, 168, 177, 193, 197, 235 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.This | 108, 152 |
| abstract_inverted_index.aims | 32 |
| abstract_inverted_index.also | 248 |
| abstract_inverted_index.find | 34, 190 |
| abstract_inverted_index.from | 176 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.many | 85 |
| abstract_inverted_index.more | 163, 249, 258 |
| abstract_inverted_index.rate | 228 |
| abstract_inverted_index.same | 236 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.test | 71 |
| abstract_inverted_index.than | 251 |
| abstract_inverted_index.that | 38, 83, 135 |
| abstract_inverted_index.then | 182 |
| abstract_inverted_index.uses | 183 |
| abstract_inverted_index.with | 80, 234 |
| abstract_inverted_index.83.5% | 225 |
| abstract_inverted_index.Given | 0 |
| abstract_inverted_index.Then, | 165 |
| abstract_inverted_index.found | 244, 253 |
| abstract_inverted_index.input | 36 |
| abstract_inverted_index.paper | 109 |
| abstract_inverted_index.poses | 59 |
| abstract_inverted_index.proxy | 147, 153 |
| abstract_inverted_index.serve | 144 |
| abstract_inverted_index.their | 10 |
| abstract_inverted_index.those | 252 |
| abstract_inverted_index.tool, | 213 |
| abstract_inverted_index.using | 49 |
| abstract_inverted_index.which | 31, 73, 98 |
| abstract_inverted_index.(1)~it | 63 |
| abstract_inverted_index.137.7% | 257 |
| abstract_inverted_index.become | 15 |
| abstract_inverted_index.budget | 237 |
| abstract_inverted_index.causes | 39 |
| abstract_inverted_index.cover. | 107 |
| abstract_inverted_index.formal | 46 |
| abstract_inverted_index.higher | 226 |
| abstract_inverted_index.linear | 141 |
| abstract_inverted_index.mimics | 155 |
| abstract_inverted_index.models | 82 |
| abstract_inverted_index.modern | 5 |
| abstract_inverted_index.safety | 11, 47, 89, 179, 242 |
| abstract_inverted_index.sample | 172 |
| abstract_inverted_index.signal | 37 |
| abstract_inverted_index.start, | 130 |
| abstract_inverted_index.system | 42, 66 |
| abstract_inverted_index.compare | 204 |
| abstract_inverted_index.control | 7, 27, 41, 57, 118, 198, 218 |
| abstract_inverted_index.defined | 93 |
| abstract_inverted_index.diverse | 250 |
| abstract_inverted_index.employs | 167 |
| abstract_inverted_index.execute | 68 |
| abstract_inverted_index.inputs, | 72 |
| abstract_inverted_index.program | 134, 154 |
| abstract_inverted_index.sampled | 194 |
| abstract_inverted_index.success | 227 |
| abstract_inverted_index.system. | 199 |
| abstract_inverted_index.systems | 28, 58, 79 |
| abstract_inverted_index.testing | 26 |
| abstract_inverted_index.trials. | 240 |
| abstract_inverted_index.violate | 44 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.Synthify | 131, 166, 222, 246 |
| abstract_inverted_index.achieves | 223 |
| abstract_inverted_index.adoption | 3 |
| abstract_inverted_index.applying | 53 |
| abstract_inverted_index.approach | 24, 121 |
| abstract_inverted_index.average, | 221 |
| abstract_inverted_index.compared | 231 |
| abstract_inverted_index.covering | 256 |
| abstract_inverted_index.critical | 17 |
| abstract_inverted_index.ensuring | 9 |
| abstract_inverted_index.evaluate | 201 |
| abstract_inverted_index.existing | 102 |
| abstract_inverted_index.numerous | 69 |
| abstract_inverted_index.performs | 122 |
| abstract_inverted_index.process. | 127 |
| abstract_inverted_index.publicly | 216 |
| abstract_inverted_index.requires | 64 |
| abstract_inverted_index.software | 20 |
| abstract_inverted_index.strategy | 170 |
| abstract_inverted_index.systems, | 8 |
| abstract_inverted_index.systems. | 119, 219 |
| abstract_inverted_index.tailored | 115 |
| abstract_inverted_index.testing. | 21 |
| abstract_inverted_index.Simulated | 185 |
| abstract_inverted_index.Synthify, | 111, 202 |
| abstract_inverted_index.algorithm | 188 |
| abstract_inverted_index.available | 217 |
| abstract_inverted_index.candidate | 70 |
| abstract_inverted_index.difficult | 100 |
| abstract_inverted_index.framework | 114 |
| abstract_inverted_index.prevalent | 23 |
| abstract_inverted_index.promising | 174 |
| abstract_inverted_index.two-phase | 126 |
| abstract_inverted_index.typically | 92 |
| abstract_inverted_index.AI-enabled | 6, 56, 117 |
| abstract_inverted_index.PSY-TaLiRo | 233 |
| abstract_inverted_index.approaches | 104 |
| abstract_inverted_index.efficient. | 164 |
| abstract_inverted_index.implements | 136 |
| abstract_inverted_index.increasing | 2 |
| abstract_inverted_index.introduces | 110 |
| abstract_inverted_index.violations | 191, 243 |
| abstract_inverted_index.$ε$-greedy | 169 |
| abstract_inverted_index.PSY-TaLiRo, | 207, 255 |
| abstract_inverted_index.algorithms. | 51 |
| abstract_inverted_index.challenges: | 62 |
| abstract_inverted_index.conjunctive | 96, 178 |
| abstract_inverted_index.controller. | 151 |
| abstract_inverted_index.controllers | 142 |
| abstract_inverted_index.parameters, | 86 |
| abstract_inverted_index.reliability | 13 |
| abstract_inverted_index.significant | 61 |
| abstract_inverted_index.synthesizes | 132 |
| abstract_inverted_index.(2)~multiple | 88 |
| abstract_inverted_index.controller's | 158 |
| abstract_inverted_index.optimization | 50 |
| abstract_inverted_index.particularly | 77 |
| abstract_inverted_index.requirements | 90 |
| abstract_inverted_index.falsification | 54, 103, 113, 123, 187, 212, 230, 239 |
| abstract_inverted_index.functionality | 159 |
| abstract_inverted_index.specification | 48 |
| abstract_inverted_index.falsification, | 30 |
| abstract_inverted_index.specification, | 97 |
| abstract_inverted_index.specification. | 180 |
| abstract_inverted_index.Annealing-based | 186 |
| abstract_inverted_index.comprehensively | 106 |
| abstract_inverted_index.computationally | 162 |
| abstract_inverted_index.time-consuming, | 76 |
| abstract_inverted_index.state-of-the-art | 209 |
| abstract_inverted_index.sub-specification | 175, 195 |
| abstract_inverted_index.industrial-strength | 211 |
| abstract_inverted_index.sub-specifications. | 259 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |