Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3929/ethz-b-000599214
Single-shot diffraction imaging of isolated nanosized particles has seen remarkable success in recent years, yielding in-situ measurements with ultra-high spatial and temporal resolution. The progress of high-repetition-rate sources for intense X-ray pulses has further enabled recording datasets containing millions of diffraction images, which are needed for structure determination of specimens with greater structural variety and for dynamic experiments. The size of the datasets, however, represents a monumental problem for their analysis. Here, we present an automatized approach for finding semantic similarities in coherent diffraction images without relying on human expert labeling. By introducing the concept of projection learning, we extend self-supervised contrastive learning to the context of coherent diffraction imaging. As a result, we achieve a semantic dimensionality reduction producing meaningful embeddings that align with the physical intuition of an experienced human researcher. The method yields a substantial improvement compared to previous approaches, paving the way toward real-time and large-scale analysis of coherent diffraction experiments at X-ray free-electron lasers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.11752
- https://arxiv.org/pdf/2208.11752
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293332742
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293332742Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3929/ethz-b-000599214Digital Object Identifier
- Title
-
Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-16Full publication date if available
- Authors
-
Julian Zimmermann, Fabien Beguet, Daniel Guthruf, Bruno Langbehn, Daniela RuppList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.11752Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.11752Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.11752Direct OA link when available
- Concepts
-
Diffraction, Computer science, Artificial intelligence, Projection (relational algebra), Context (archaeology), Dimensionality reduction, Pattern recognition (psychology), Natural language processing, Optics, Physics, Algorithm, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293332742 |
|---|---|
| doi | https://doi.org/10.3929/ethz-b-000599214 |
| ids.doi | https://doi.org/10.3929/ethz-b-000599214 |
| ids.openalex | https://openalex.org/W4293332742 |
| fwci | 0.0 |
| type | preprint |
| title | Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11183 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3108 |
| topics[0].subfield.display_name | Radiation |
| topics[0].display_name | Advanced X-ray Imaging Techniques |
| topics[1].id | https://openalex.org/T10857 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1315 |
| topics[1].subfield.display_name | Structural Biology |
| topics[1].display_name | Advanced Electron Microscopy Techniques and Applications |
| topics[2].id | https://openalex.org/T12762 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9327999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3104 |
| topics[2].subfield.display_name | Condensed Matter Physics |
| topics[2].display_name | Crystallography and Radiation Phenomena |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C207114421 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6728617548942566 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q133900 |
| concepts[0].display_name | Diffraction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6052880883216858 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5200343132019043 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C57493831 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4749883711338043 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[3].display_name | Projection (relational algebra) |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44328078627586365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C70518039 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4319227635860443 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[5].display_name | Dimensionality reduction |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3601621985435486 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33908259868621826 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.30108642578125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20991474390029907 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16888919472694397 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09297633171081543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/diffraction |
| keywords[0].score | 0.6728617548942566 |
| keywords[0].display_name | Diffraction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6052880883216858 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5200343132019043 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/projection |
| keywords[3].score | 0.4749883711338043 |
| keywords[3].display_name | Projection (relational algebra) |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.44328078627586365 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[5].score | 0.4319227635860443 |
| keywords[5].display_name | Dimensionality reduction |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3601621985435486 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.33908259868621826 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.30108642578125 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.20991474390029907 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.16888919472694397 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.09297633171081543 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.11752 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.11752 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.11752 |
| locations[1].id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/599214 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402302 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| locations[1].source.host_organization | https://openalex.org/I35440088 |
| locations[1].source.host_organization_name | ETH Zurich |
| locations[1].source.host_organization_lineage | https://openalex.org/I35440088 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | npj Computational Materials, 9 (1) |
| locations[1].landing_page_url | http://hdl.handle.net/20.500.11850/599214 |
| locations[2].id | doi:10.48550/arxiv.2208.11752 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2208.11752 |
| locations[3].id | doi:10.3929/ethz-b-000599214 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051236 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | ETH Zürich Research Collection |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.3929/ethz-b-000599214 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006635945 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1964-0078 |
| authorships[0].author.display_name | Julian Zimmermann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zimmermann, Julian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033649984 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fabien Beguet |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Beguet, Fabien |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044294619 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Daniel Guthruf |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guthruf, Daniel |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5000668700 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3245-8169 |
| authorships[3].author.display_name | Bruno Langbehn |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Langbehn, Bruno |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5075886239 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6504-7956 |
| authorships[4].author.display_name | Daniela Rupp |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rupp, Daniela |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.11752 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-08-27T00:00:00 |
| display_name | Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11183 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3108 |
| primary_topic.subfield.display_name | Radiation |
| primary_topic.display_name | Advanced X-ray Imaging Techniques |
| related_works | https://openalex.org/W3176621072, https://openalex.org/W2183196443, https://openalex.org/W2034034955, https://openalex.org/W2004869787, https://openalex.org/W2995475466, https://openalex.org/W619018173, https://openalex.org/W2158704926, https://openalex.org/W2536888818, https://openalex.org/W2498710829, https://openalex.org/W1986248657 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.11752 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.11752 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.11752 |
| primary_location.id | pmh:oai:arXiv.org:2208.11752 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.11752 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.11752 |
| publication_date | 2023-02-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 65, 111, 115, 136 |
| abstract_inverted_index.As | 110 |
| abstract_inverted_index.By | 91 |
| abstract_inverted_index.an | 74, 129 |
| abstract_inverted_index.at | 155 |
| abstract_inverted_index.in | 11, 81 |
| abstract_inverted_index.of | 3, 25, 39, 48, 60, 95, 106, 128, 151 |
| abstract_inverted_index.on | 87 |
| abstract_inverted_index.to | 103, 140 |
| abstract_inverted_index.we | 72, 98, 113 |
| abstract_inverted_index.The | 23, 58, 133 |
| abstract_inverted_index.and | 20, 54, 148 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.for | 28, 45, 55, 68, 77 |
| abstract_inverted_index.has | 7, 32 |
| abstract_inverted_index.the | 61, 93, 104, 125, 144 |
| abstract_inverted_index.way | 145 |
| abstract_inverted_index.seen | 8 |
| abstract_inverted_index.size | 59 |
| abstract_inverted_index.that | 122 |
| abstract_inverted_index.with | 17, 50, 124 |
| abstract_inverted_index.Here, | 71 |
| abstract_inverted_index.X-ray | 30, 156 |
| abstract_inverted_index.align | 123 |
| abstract_inverted_index.human | 88, 131 |
| abstract_inverted_index.their | 69 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.expert | 89 |
| abstract_inverted_index.extend | 99 |
| abstract_inverted_index.images | 84 |
| abstract_inverted_index.method | 134 |
| abstract_inverted_index.needed | 44 |
| abstract_inverted_index.paving | 143 |
| abstract_inverted_index.pulses | 31 |
| abstract_inverted_index.recent | 12 |
| abstract_inverted_index.toward | 146 |
| abstract_inverted_index.years, | 13 |
| abstract_inverted_index.yields | 135 |
| abstract_inverted_index.achieve | 114 |
| abstract_inverted_index.concept | 94 |
| abstract_inverted_index.context | 105 |
| abstract_inverted_index.dynamic | 56 |
| abstract_inverted_index.enabled | 34 |
| abstract_inverted_index.finding | 78 |
| abstract_inverted_index.further | 33 |
| abstract_inverted_index.greater | 51 |
| abstract_inverted_index.images, | 41 |
| abstract_inverted_index.imaging | 2 |
| abstract_inverted_index.in-situ | 15 |
| abstract_inverted_index.intense | 29 |
| abstract_inverted_index.lasers. | 158 |
| abstract_inverted_index.present | 73 |
| abstract_inverted_index.problem | 67 |
| abstract_inverted_index.relying | 86 |
| abstract_inverted_index.result, | 112 |
| abstract_inverted_index.sources | 27 |
| abstract_inverted_index.spatial | 19 |
| abstract_inverted_index.success | 10 |
| abstract_inverted_index.variety | 53 |
| abstract_inverted_index.without | 85 |
| abstract_inverted_index.analysis | 150 |
| abstract_inverted_index.approach | 76 |
| abstract_inverted_index.coherent | 82, 107, 152 |
| abstract_inverted_index.compared | 139 |
| abstract_inverted_index.datasets | 36 |
| abstract_inverted_index.however, | 63 |
| abstract_inverted_index.imaging. | 109 |
| abstract_inverted_index.isolated | 4 |
| abstract_inverted_index.learning | 102 |
| abstract_inverted_index.millions | 38 |
| abstract_inverted_index.physical | 126 |
| abstract_inverted_index.previous | 141 |
| abstract_inverted_index.progress | 24 |
| abstract_inverted_index.semantic | 79, 116 |
| abstract_inverted_index.temporal | 21 |
| abstract_inverted_index.yielding | 14 |
| abstract_inverted_index.analysis. | 70 |
| abstract_inverted_index.datasets, | 62 |
| abstract_inverted_index.intuition | 127 |
| abstract_inverted_index.labeling. | 90 |
| abstract_inverted_index.learning, | 97 |
| abstract_inverted_index.nanosized | 5 |
| abstract_inverted_index.particles | 6 |
| abstract_inverted_index.producing | 119 |
| abstract_inverted_index.real-time | 147 |
| abstract_inverted_index.recording | 35 |
| abstract_inverted_index.reduction | 118 |
| abstract_inverted_index.specimens | 49 |
| abstract_inverted_index.structure | 46 |
| abstract_inverted_index.containing | 37 |
| abstract_inverted_index.embeddings | 121 |
| abstract_inverted_index.meaningful | 120 |
| abstract_inverted_index.monumental | 66 |
| abstract_inverted_index.projection | 96 |
| abstract_inverted_index.remarkable | 9 |
| abstract_inverted_index.represents | 64 |
| abstract_inverted_index.structural | 52 |
| abstract_inverted_index.ultra-high | 18 |
| abstract_inverted_index.Single-shot | 0 |
| abstract_inverted_index.approaches, | 142 |
| abstract_inverted_index.automatized | 75 |
| abstract_inverted_index.contrastive | 101 |
| abstract_inverted_index.diffraction | 1, 40, 83, 108, 153 |
| abstract_inverted_index.experienced | 130 |
| abstract_inverted_index.experiments | 154 |
| abstract_inverted_index.improvement | 138 |
| abstract_inverted_index.introducing | 92 |
| abstract_inverted_index.large-scale | 149 |
| abstract_inverted_index.researcher. | 132 |
| abstract_inverted_index.resolution. | 22 |
| abstract_inverted_index.substantial | 137 |
| abstract_inverted_index.experiments. | 57 |
| abstract_inverted_index.measurements | 16 |
| abstract_inverted_index.similarities | 80 |
| abstract_inverted_index.determination | 47 |
| abstract_inverted_index.free-electron | 157 |
| abstract_inverted_index.dimensionality | 117 |
| abstract_inverted_index.self-supervised | 100 |
| abstract_inverted_index.high-repetition-rate | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.00150288 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |