Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2196/67356
Background Pressure ulcers (PUs) and incontinence-associated dermatitis (IAD) are prevalent conditions in clinical settings, posing significant challenges due to their similar presentations but differing treatment needs. Accurate differentiation between PUs and IAD is essential for appropriate patient care, yet it remains a burden for nursing staff and wound care experts. Objective This study aims to develop and introduce a robust multimodal deep learning framework for the classification of PUs and IAD, along with the fine-grained categorization of their respective wound severities, to enhance diagnostic accuracy and support clinical decision-making. Methods We collected and annotated a dataset of 1555 wound images, achieving consensus among 4 wound experts. Our framework integrates wound images with categorical patient data to improve classification performance. We evaluated 4 models—2 convolutional neural networks and 2 transformer-based architectures—each with approximately 25 million parameters. Various data preprocessing strategies, augmentation techniques, training methods (including multimodal data integration, synthetic data generation, and sampling), and postprocessing approaches (including ensembling and test-time augmentation) were systematically tested to optimize model performance. Results The transformer-based TinyViT model achieved the highest performance in binary classification of PU and IAD, with an F1-score (harmonic mean of precision and recall) of 93.23%, outperforming wound care experts and nursing staff on the test dataset. In fine-grained classification of wound categories, the TinyViT model also performed best for PU categories with an F1-score of 75.43%, while ConvNeXtV2 showed superior performance in IAD category classification with an F1-score of 53.20%. Incorporating multimodal data improved performance in binary classification but had less impact on fine-grained categorization. Augmentation strategies and training techniques significantly influenced model performance, with ensembling enhancing accuracy across all tasks. Conclusions Our multimodal deep learning framework effectively differentiates between PUs and IAD, achieving high accuracy and outperforming human wound care experts. By integrating wound images with categorical patient data, the model enhances diagnostic precision, offering a valuable decision-support tool for health care professionals. This advancement has the potential to reduce diagnostic uncertainty, optimize treatment pathways, and alleviate the burden on medical staff, leading to faster interventions and improved patient outcomes. The framework’s strong performance suggests practical applications in clinical settings, such as integration into hospital electronic health record systems or mobile applications for bedside diagnostics. Future work should focus on validating real-world implementation, expanding dataset diversity, and refining fine-grained classification capabilities to further enhance clinical utility.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/67356
- OA Status
- diamond
- Cited By
- 2
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409988859
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409988859Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/67356Digital Object Identifier
- Title
-
Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Alexander Brehmer, Constantin Seibold, Jan Egger, Khalid Majjouti, Michaela Tapp‐Herrenbrück, Hannah Pinnekamp, Vanessa Priester, Michael Aleithe, Uli Fischer, Bernadette Hosters, Jens KleesiekList of authors in order
- Landing page
-
https://doi.org/10.2196/67356Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/67356Direct OA link when available
- Concepts
-
Algorithm, Deep learning, Artificial intelligence, Computer science, Machine learning, Medicine, DermatologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409988859 |
|---|---|
| doi | https://doi.org/10.2196/67356 |
| ids.doi | https://doi.org/10.2196/67356 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40605794 |
| ids.openalex | https://openalex.org/W4409988859 |
| fwci | 30.61971705 |
| type | article |
| title | Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | e67356 |
| biblio.first_page | e67356 |
| topics[0].id | https://openalex.org/T11670 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3609 |
| topics[0].subfield.display_name | Occupational Therapy |
| topics[0].display_name | Pressure Ulcer Prevention and Management |
| topics[1].id | https://openalex.org/T10990 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9721999764442444 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Infection Control and Ventilation |
| topics[2].id | https://openalex.org/T11109 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9408000111579895 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2737 |
| topics[2].subfield.display_name | Physiology |
| topics[2].display_name | Thermoregulation and physiological responses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11413529 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5487611293792725 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[0].display_name | Algorithm |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49713900685310364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4872699975967407 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48093336820602417 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.474097341299057 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40712231397628784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C16005928 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33305734395980835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q171171 |
| concepts[6].display_name | Dermatology |
| keywords[0].id | https://openalex.org/keywords/algorithm |
| keywords[0].score | 0.5487611293792725 |
| keywords[0].display_name | Algorithm |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.49713900685310364 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4872699975967407 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48093336820602417 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.474097341299057 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.40712231397628784 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/dermatology |
| keywords[6].score | 0.33305734395980835 |
| keywords[6].display_name | Dermatology |
| language | en |
| locations[0].id | doi:10.2196/67356 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387286577 |
| locations[0].source.issn | 2817-1705 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2817-1705 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JMIR AI |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JMIR AI |
| locations[0].landing_page_url | https://doi.org/10.2196/67356 |
| locations[1].id | pmid:40605794 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JMIR AI |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40605794 |
| locations[2].id | pmh:oai:doaj.org/article:eda380b29e7a4d14b691834c6ec782bc |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JMIR AI, Vol 4, Pp e67356-e67356 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/eda380b29e7a4d14b691834c6ec782bc |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12223690 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | JMIR AI |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12223690 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5092366509 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-2795-6174 |
| authorships[0].author.display_name | Alexander Brehmer |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[0].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[0].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Essen University Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexander Brehmer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[1].author.id | https://openalex.org/A5084474018 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6042-8437 |
| authorships[1].author.display_name | Constantin Seibold |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[1].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[1].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Essen University Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Constantin Seibold |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[2].author.id | https://openalex.org/A5010662766 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5225-1982 |
| authorships[2].author.display_name | Jan Egger |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I62318514 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Computer Science, University of Duisburg-Essen, Essen, Germany. |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210119759 |
| authorships[2].affiliations[2].raw_affiliation_string | Center for Virtual and Extended Reality in Medicine, University Medicine Essen, Essen, Germany. |
| authorships[2].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[2].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Essen University Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I62318514 |
| authorships[2].institutions[1].ror | https://ror.org/04mz5ra38 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I62318514 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University of Duisburg-Essen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jan Egger |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Virtual and Extended Reality in Medicine, University Medicine Essen, Essen, Germany., Faculty of Computer Science, University of Duisburg-Essen, Essen, Germany., Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[3].author.id | https://openalex.org/A5084457364 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4258-5206 |
| authorships[3].author.display_name | Khalid Majjouti |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[3].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[3].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Essen University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Khalid Majjouti |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[4].author.id | https://openalex.org/A5117177569 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Michaela Tapp‐Herrenbrück |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[4].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[4].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Essen University Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Michaela Tapp-Herrenbrück |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[5].author.id | https://openalex.org/A5117177568 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1330-4372 |
| authorships[5].author.display_name | Hannah Pinnekamp |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I8204097 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[5].institutions[0].id | https://openalex.org/I8204097 |
| authorships[5].institutions[0].ror | https://ror.org/05591te55 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hannah Pinnekamp |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[6].author.id | https://openalex.org/A5117397242 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Vanessa Priester |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I8204097 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[6].institutions[0].id | https://openalex.org/I8204097 |
| authorships[6].institutions[0].ror | https://ror.org/05591te55 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vanessa Priester |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[7].author.id | https://openalex.org/A5117177570 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Michael Aleithe |
| authorships[7].affiliations[0].raw_affiliation_string | Sciendis GmbH, Leipzig, Germany. |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Michael Aleithe |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Sciendis GmbH, Leipzig, Germany. |
| authorships[8].author.id | https://openalex.org/A5062171038 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1398-6510 |
| authorships[8].author.display_name | Uli Fischer |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I8204097 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[8].institutions[0].id | https://openalex.org/I8204097 |
| authorships[8].institutions[0].ror | https://ror.org/05591te55 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Uli Fischer |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Clinical Nursing Research and Quality Management, Hospital of the Ludwig Maximilian University, Munich, Germany. |
| authorships[9].author.id | https://openalex.org/A5034877847 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5142-0385 |
| authorships[9].author.display_name | Bernadette Hosters |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[9].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[9].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | Essen University Hospital |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Bernadette Hosters |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Nursing Development and Nursing Research, University Hospital Essen, Essen, Germany. |
| authorships[10].author.id | https://openalex.org/A5017161970 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-8686-0682 |
| authorships[10].author.display_name | Jens Kleesiek |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[10].affiliations[0].raw_affiliation_string | Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I62318514 |
| authorships[10].affiliations[1].raw_affiliation_string | Faculty of Computer Science, University of Duisburg-Essen, Essen, Germany. |
| authorships[10].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[10].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[10].institutions[0].country_code | DE |
| authorships[10].institutions[0].display_name | Essen University Hospital |
| authorships[10].institutions[1].id | https://openalex.org/I62318514 |
| authorships[10].institutions[1].ror | https://ror.org/04mz5ra38 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I62318514 |
| authorships[10].institutions[1].country_code | DE |
| authorships[10].institutions[1].display_name | University of Duisburg-Essen |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jens Kleesiek |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Faculty of Computer Science, University of Duisburg-Essen, Essen, Germany., Institute for Artificial Intelligence in Medicine, Essen University Hospital, Girardetstr. 2, Essen, 45131, Germany, 0201 72377829. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/67356 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11670 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3609 |
| primary_topic.subfield.display_name | Occupational Therapy |
| primary_topic.display_name | Pressure Ulcer Prevention and Management |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3082895349 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/67356 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387286577 |
| best_oa_location.source.issn | 2817-1705 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2817-1705 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JMIR AI |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JMIR AI |
| best_oa_location.landing_page_url | https://doi.org/10.2196/67356 |
| primary_location.id | doi:10.2196/67356 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387286577 |
| primary_location.source.issn | 2817-1705 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2817-1705 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JMIR AI |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JMIR AI |
| primary_location.landing_page_url | https://doi.org/10.2196/67356 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3003479397, https://openalex.org/W2884611860, https://openalex.org/W4367189201, https://openalex.org/W4213219238, https://openalex.org/W4319460321, https://openalex.org/W2807769526, https://openalex.org/W4225414019, https://openalex.org/W4296822442, https://openalex.org/W4387709565, https://openalex.org/W4318938311, https://openalex.org/W2789325239, https://openalex.org/W4401638048, https://openalex.org/W4319335182, https://openalex.org/W3149442530, https://openalex.org/W3092760571, https://openalex.org/W4393143202, https://openalex.org/W4312864984, https://openalex.org/W3209672974, https://openalex.org/W4206986224, https://openalex.org/W4390430704, https://openalex.org/W4406831076, https://openalex.org/W2783453269, https://openalex.org/W4386076493, https://openalex.org/W3145444543, https://openalex.org/W4388145401, https://openalex.org/W4312671791, https://openalex.org/W2765407302, https://openalex.org/W3035682985, https://openalex.org/W3202897123, https://openalex.org/W4391756091 |
| referenced_works_count | 30 |
| abstract_inverted_index.2 | 128 |
| abstract_inverted_index.4 | 104, 122 |
| abstract_inverted_index.a | 42, 59, 95, 306 |
| abstract_inverted_index.25 | 133 |
| abstract_inverted_index.By | 292 |
| abstract_inverted_index.In | 206 |
| abstract_inverted_index.PU | 181, 219 |
| abstract_inverted_index.We | 91, 120 |
| abstract_inverted_index.an | 185, 222, 236 |
| abstract_inverted_index.as | 352 |
| abstract_inverted_index.in | 12, 177, 231, 245, 348 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.it | 40 |
| abstract_inverted_index.of | 68, 77, 97, 180, 189, 193, 209, 224, 238 |
| abstract_inverted_index.on | 202, 252, 330, 370 |
| abstract_inverted_index.or | 360 |
| abstract_inverted_index.to | 19, 55, 82, 116, 164, 319, 334, 382 |
| abstract_inverted_index.IAD | 32, 232 |
| abstract_inverted_index.Our | 107, 272 |
| abstract_inverted_index.PUs | 30, 69, 280 |
| abstract_inverted_index.The | 169, 341 |
| abstract_inverted_index.all | 269 |
| abstract_inverted_index.and | 5, 31, 47, 57, 70, 86, 93, 127, 151, 153, 158, 182, 191, 199, 257, 281, 286, 326, 337, 377 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.but | 23, 248 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 35, 44, 65, 218, 310, 363 |
| abstract_inverted_index.had | 249 |
| abstract_inverted_index.has | 316 |
| abstract_inverted_index.the | 66, 74, 174, 203, 212, 300, 317, 328 |
| abstract_inverted_index.yet | 39 |
| abstract_inverted_index.1555 | 98 |
| abstract_inverted_index.IAD, | 71, 183, 282 |
| abstract_inverted_index.This | 52, 314 |
| abstract_inverted_index.aims | 54 |
| abstract_inverted_index.also | 215 |
| abstract_inverted_index.best | 217 |
| abstract_inverted_index.care | 49, 197, 290, 312 |
| abstract_inverted_index.data | 115, 137, 146, 149, 242 |
| abstract_inverted_index.deep | 62, 274 |
| abstract_inverted_index.high | 284 |
| abstract_inverted_index.into | 354 |
| abstract_inverted_index.less | 250 |
| abstract_inverted_index.mean | 188 |
| abstract_inverted_index.such | 351 |
| abstract_inverted_index.test | 204 |
| abstract_inverted_index.tool | 309 |
| abstract_inverted_index.were | 161 |
| abstract_inverted_index.with | 73, 112, 131, 184, 221, 235, 264, 296 |
| abstract_inverted_index.work | 367 |
| abstract_inverted_index.(IAD) | 8 |
| abstract_inverted_index.(PUs) | 4 |
| abstract_inverted_index.along | 72 |
| abstract_inverted_index.among | 103 |
| abstract_inverted_index.care, | 38 |
| abstract_inverted_index.data, | 299 |
| abstract_inverted_index.focus | 369 |
| abstract_inverted_index.human | 288 |
| abstract_inverted_index.model | 166, 172, 214, 262, 301 |
| abstract_inverted_index.staff | 46, 201 |
| abstract_inverted_index.study | 53 |
| abstract_inverted_index.their | 20, 78 |
| abstract_inverted_index.while | 226 |
| abstract_inverted_index.wound | 48, 80, 99, 105, 110, 196, 210, 289, 294 |
| abstract_inverted_index.Future | 366 |
| abstract_inverted_index.across | 268 |
| abstract_inverted_index.binary | 178, 246 |
| abstract_inverted_index.burden | 43, 329 |
| abstract_inverted_index.faster | 335 |
| abstract_inverted_index.health | 311, 357 |
| abstract_inverted_index.images | 111, 295 |
| abstract_inverted_index.impact | 251 |
| abstract_inverted_index.mobile | 361 |
| abstract_inverted_index.needs. | 26 |
| abstract_inverted_index.neural | 125 |
| abstract_inverted_index.posing | 15 |
| abstract_inverted_index.record | 358 |
| abstract_inverted_index.reduce | 320 |
| abstract_inverted_index.robust | 60 |
| abstract_inverted_index.should | 368 |
| abstract_inverted_index.showed | 228 |
| abstract_inverted_index.staff, | 332 |
| abstract_inverted_index.strong | 343 |
| abstract_inverted_index.tasks. | 270 |
| abstract_inverted_index.tested | 163 |
| abstract_inverted_index.ulcers | 3 |
| abstract_inverted_index.53.20%. | 239 |
| abstract_inverted_index.75.43%, | 225 |
| abstract_inverted_index.93.23%, | 194 |
| abstract_inverted_index.Methods | 90 |
| abstract_inverted_index.Results | 168 |
| abstract_inverted_index.TinyViT | 171, 213 |
| abstract_inverted_index.Various | 136 |
| abstract_inverted_index.bedside | 364 |
| abstract_inverted_index.between | 29, 279 |
| abstract_inverted_index.dataset | 96, 375 |
| abstract_inverted_index.develop | 56 |
| abstract_inverted_index.enhance | 83, 384 |
| abstract_inverted_index.experts | 198 |
| abstract_inverted_index.further | 383 |
| abstract_inverted_index.highest | 175 |
| abstract_inverted_index.images, | 100 |
| abstract_inverted_index.improve | 117 |
| abstract_inverted_index.leading | 333 |
| abstract_inverted_index.medical | 331 |
| abstract_inverted_index.methods | 143 |
| abstract_inverted_index.million | 134 |
| abstract_inverted_index.nursing | 45, 200 |
| abstract_inverted_index.patient | 37, 114, 298, 339 |
| abstract_inverted_index.recall) | 192 |
| abstract_inverted_index.remains | 41 |
| abstract_inverted_index.similar | 21 |
| abstract_inverted_index.support | 87 |
| abstract_inverted_index.systems | 359 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 27 |
| abstract_inverted_index.F1-score | 186, 223, 237 |
| abstract_inverted_index.Pressure | 2 |
| abstract_inverted_index.accuracy | 85, 267, 285 |
| abstract_inverted_index.achieved | 173 |
| abstract_inverted_index.category | 233 |
| abstract_inverted_index.clinical | 13, 88, 349, 385 |
| abstract_inverted_index.dataset. | 205 |
| abstract_inverted_index.enhances | 302 |
| abstract_inverted_index.experts. | 50, 106, 291 |
| abstract_inverted_index.hospital | 355 |
| abstract_inverted_index.improved | 243, 338 |
| abstract_inverted_index.learning | 63, 275 |
| abstract_inverted_index.networks | 126 |
| abstract_inverted_index.offering | 305 |
| abstract_inverted_index.optimize | 165, 323 |
| abstract_inverted_index.refining | 378 |
| abstract_inverted_index.suggests | 345 |
| abstract_inverted_index.superior | 229 |
| abstract_inverted_index.training | 142, 258 |
| abstract_inverted_index.utility. | 386 |
| abstract_inverted_index.valuable | 307 |
| abstract_inverted_index.(harmonic | 187 |
| abstract_inverted_index.Objective | 51 |
| abstract_inverted_index.achieving | 101, 283 |
| abstract_inverted_index.alleviate | 327 |
| abstract_inverted_index.annotated | 94 |
| abstract_inverted_index.collected | 92 |
| abstract_inverted_index.consensus | 102 |
| abstract_inverted_index.differing | 24 |
| abstract_inverted_index.enhancing | 266 |
| abstract_inverted_index.essential | 34 |
| abstract_inverted_index.evaluated | 121 |
| abstract_inverted_index.expanding | 374 |
| abstract_inverted_index.framework | 64, 108, 276 |
| abstract_inverted_index.introduce | 58 |
| abstract_inverted_index.outcomes. | 340 |
| abstract_inverted_index.pathways, | 325 |
| abstract_inverted_index.performed | 216 |
| abstract_inverted_index.potential | 318 |
| abstract_inverted_index.practical | 346 |
| abstract_inverted_index.precision | 190 |
| abstract_inverted_index.prevalent | 10 |
| abstract_inverted_index.settings, | 14, 350 |
| abstract_inverted_index.synthetic | 148 |
| abstract_inverted_index.test-time | 159 |
| abstract_inverted_index.treatment | 25, 324 |
| abstract_inverted_index.(including | 144, 156 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.ConvNeXtV2 | 227 |
| abstract_inverted_index.approaches | 155 |
| abstract_inverted_index.categories | 220 |
| abstract_inverted_index.challenges | 17 |
| abstract_inverted_index.conditions | 11 |
| abstract_inverted_index.dermatitis | 7 |
| abstract_inverted_index.diagnostic | 84, 303, 321 |
| abstract_inverted_index.diversity, | 376 |
| abstract_inverted_index.electronic | 356 |
| abstract_inverted_index.ensembling | 157, 265 |
| abstract_inverted_index.influenced | 261 |
| abstract_inverted_index.integrates | 109 |
| abstract_inverted_index.models—2 | 123 |
| abstract_inverted_index.multimodal | 61, 145, 241, 273 |
| abstract_inverted_index.precision, | 304 |
| abstract_inverted_index.real-world | 372 |
| abstract_inverted_index.respective | 79 |
| abstract_inverted_index.sampling), | 152 |
| abstract_inverted_index.strategies | 256 |
| abstract_inverted_index.techniques | 259 |
| abstract_inverted_index.validating | 371 |
| abstract_inverted_index.Conclusions | 271 |
| abstract_inverted_index.advancement | 315 |
| abstract_inverted_index.appropriate | 36 |
| abstract_inverted_index.categorical | 113, 297 |
| abstract_inverted_index.categories, | 211 |
| abstract_inverted_index.effectively | 277 |
| abstract_inverted_index.generation, | 150 |
| abstract_inverted_index.integrating | 293 |
| abstract_inverted_index.integration | 353 |
| abstract_inverted_index.parameters. | 135 |
| abstract_inverted_index.performance | 176, 230, 244, 344 |
| abstract_inverted_index.severities, | 81 |
| abstract_inverted_index.significant | 16 |
| abstract_inverted_index.strategies, | 139 |
| abstract_inverted_index.techniques, | 141 |
| abstract_inverted_index.Augmentation | 255 |
| abstract_inverted_index.applications | 347, 362 |
| abstract_inverted_index.augmentation | 140 |
| abstract_inverted_index.capabilities | 381 |
| abstract_inverted_index.diagnostics. | 365 |
| abstract_inverted_index.fine-grained | 75, 207, 253, 379 |
| abstract_inverted_index.integration, | 147 |
| abstract_inverted_index.performance, | 263 |
| abstract_inverted_index.performance. | 119, 167 |
| abstract_inverted_index.uncertainty, | 322 |
| abstract_inverted_index.Incorporating | 240 |
| abstract_inverted_index.approximately | 132 |
| abstract_inverted_index.augmentation) | 160 |
| abstract_inverted_index.convolutional | 124 |
| abstract_inverted_index.framework’s | 342 |
| abstract_inverted_index.interventions | 336 |
| abstract_inverted_index.outperforming | 195, 287 |
| abstract_inverted_index.preprocessing | 138 |
| abstract_inverted_index.presentations | 22 |
| abstract_inverted_index.significantly | 260 |
| abstract_inverted_index.categorization | 76 |
| abstract_inverted_index.classification | 67, 118, 179, 208, 234, 247, 380 |
| abstract_inverted_index.differentiates | 278 |
| abstract_inverted_index.postprocessing | 154 |
| abstract_inverted_index.professionals. | 313 |
| abstract_inverted_index.systematically | 162 |
| abstract_inverted_index.categorization. | 254 |
| abstract_inverted_index.differentiation | 28 |
| abstract_inverted_index.implementation, | 373 |
| abstract_inverted_index.decision-making. | 89 |
| abstract_inverted_index.decision-support | 308 |
| abstract_inverted_index.transformer-based | 129, 170 |
| abstract_inverted_index.architectures—each | 130 |
| abstract_inverted_index.incontinence-associated | 6 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.98477886 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |