Fine-Grained Image Analysis with Deep Learning: A Survey Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.06119
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.06119
- https://arxiv.org/pdf/2111.06119
- OA Status
- green
- Cited By
- 8
- References
- 192
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212620499
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212620499Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.06119Digital Object Identifier
- Title
-
Fine-Grained Image Analysis with Deep Learning: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-11Full publication date if available
- Authors
-
Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui Tang, Jian Yang, Serge BelongieList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.06119Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.06119Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.06119Direct OA link when available
- Concepts
-
Computer science, Benchmark (surveying), Deep learning, Data science, Class (philosophy), Field (mathematics), Artificial intelligence, Task (project management), Image (mathematics), Set (abstract data type), Domain (mathematical analysis), Key (lock), Machine learning, Open research, Variation (astronomy), Cartography, Geography, World Wide Web, Economics, Astrophysics, Mathematical analysis, Pure mathematics, Programming language, Mathematics, Management, Computer security, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
192Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212620499 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.06119 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.06119 |
| ids.mag | 3212620499 |
| ids.openalex | https://openalex.org/W3212620499 |
| fwci | |
| type | preprint |
| title | Fine-Grained Image Analysis with Deep Learning: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7408055067062378 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7260468006134033 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7249520421028137 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.595416247844696 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C2777212361 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5939887762069702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[4].display_name | Class (philosophy) |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5894415378570557 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5607984066009521 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5598759651184082 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5329229831695557 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5188276171684265 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C36503486 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4909079670906067 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[10].display_name | Domain (mathematical analysis) |
| concepts[11].id | https://openalex.org/C26517878 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46690139174461365 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[11].display_name | Key (lock) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.445004940032959 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C2778464652 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4295775294303894 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q309849 |
| concepts[13].display_name | Open research |
| concepts[14].id | https://openalex.org/C2778334786 |
| concepts[14].level | 2 |
| concepts[14].score | 0.412541925907135 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1586270 |
| concepts[14].display_name | Variation (astronomy) |
| concepts[15].id | https://openalex.org/C58640448 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11966690421104431 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[15].display_name | Cartography |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.1098012924194336 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C136764020 |
| concepts[17].level | 1 |
| concepts[17].score | 0.10720917582511902 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[17].display_name | World Wide Web |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C44870925 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[19].display_name | Astrophysics |
| concepts[20].id | https://openalex.org/C134306372 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[20].display_name | Mathematical analysis |
| concepts[21].id | https://openalex.org/C202444582 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[21].display_name | Pure mathematics |
| concepts[22].id | https://openalex.org/C199360897 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[22].display_name | Programming language |
| concepts[23].id | https://openalex.org/C33923547 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[23].display_name | Mathematics |
| concepts[24].id | https://openalex.org/C187736073 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[24].display_name | Management |
| concepts[25].id | https://openalex.org/C38652104 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[25].display_name | Computer security |
| concepts[26].id | https://openalex.org/C121332964 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[26].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7408055067062378 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7260468006134033 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.7249520421028137 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.595416247844696 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/class |
| keywords[4].score | 0.5939887762069702 |
| keywords[4].display_name | Class (philosophy) |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.5894415378570557 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5607984066009521 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/task |
| keywords[7].score | 0.5598759651184082 |
| keywords[7].display_name | Task (project management) |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.5329229831695557 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.5188276171684265 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/domain |
| keywords[10].score | 0.4909079670906067 |
| keywords[10].display_name | Domain (mathematical analysis) |
| keywords[11].id | https://openalex.org/keywords/key |
| keywords[11].score | 0.46690139174461365 |
| keywords[11].display_name | Key (lock) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.445004940032959 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/open-research |
| keywords[13].score | 0.4295775294303894 |
| keywords[13].display_name | Open research |
| keywords[14].id | https://openalex.org/keywords/variation |
| keywords[14].score | 0.412541925907135 |
| keywords[14].display_name | Variation (astronomy) |
| keywords[15].id | https://openalex.org/keywords/cartography |
| keywords[15].score | 0.11966690421104431 |
| keywords[15].display_name | Cartography |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.1098012924194336 |
| keywords[16].display_name | Geography |
| keywords[17].id | https://openalex.org/keywords/world-wide-web |
| keywords[17].score | 0.10720917582511902 |
| keywords[17].display_name | World Wide Web |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.06119 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.06119 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.06119 |
| locations[1].id | pmh:oai:pure.ed.ac.uk:publications/3401454f-29a8-41a2-9142-c97833857e78 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400320 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Edinburgh Research Explorer (University of Edinburgh) |
| locations[1].source.host_organization | https://openalex.org/I98677209 |
| locations[1].source.host_organization_name | University of Edinburgh |
| locations[1].source.host_organization_lineage | https://openalex.org/I98677209 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/20.500.11820/3401454f-29a8-41a2-9142-c97833857e78 |
| locations[2].id | doi:10.48550/arxiv.2111.06119 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2111.06119 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066964304 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8200-1845 |
| authorships[0].author.display_name | Xiu-Shen Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiu-Shen Wei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046046128 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5908-3275 |
| authorships[1].author.display_name | Yi-Zhe Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yi-Zhe Song |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063600180 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5787-5073 |
| authorships[2].author.display_name | Oisin Mac Aodha |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oisin Mac Aodha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090881698 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2085-7568 |
| authorships[3].author.display_name | Jianxin Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianxin Wu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5047811387 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7658-3845 |
| authorships[4].author.display_name | Yuxin Peng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuxin Peng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035112538 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9008-222X |
| authorships[5].author.display_name | Jinhui Tang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jinhui Tang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100726984 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4800-832X |
| authorships[6].author.display_name | Jian Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jian Yang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5018609918 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0388-5217 |
| authorships[7].author.display_name | Serge Belongie |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Serge Belongie |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.06119 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fine-Grained Image Analysis with Deep Learning: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2386430105, https://openalex.org/W2356521405, https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2038534795, https://openalex.org/W2130974462, https://openalex.org/W2384358604, https://openalex.org/W2028665553, https://openalex.org/W2086519370 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.06119 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.06119 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.06119 |
| primary_location.id | pmh:oai:arXiv.org:2111.06119 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.06119 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.06119 |
| publication_date | 2021-11-11 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2895643041, https://openalex.org/W2981976713, https://openalex.org/W3015606043, https://openalex.org/W2940925558, https://openalex.org/W2883888092, https://openalex.org/W2182361439, https://openalex.org/W2128272608, https://openalex.org/W2963148524, https://openalex.org/W3009323895, https://openalex.org/W2963090248, https://openalex.org/W2560552919, https://openalex.org/W3035300720, https://openalex.org/W2471768434, https://openalex.org/W2807931652, https://openalex.org/W2963691377, https://openalex.org/W3126272270, https://openalex.org/W1797268635, https://openalex.org/W2963336685, https://openalex.org/W3182707920, https://openalex.org/W3081372396, https://openalex.org/W2904347197, https://openalex.org/W2141399712, https://openalex.org/W2099471712, https://openalex.org/W2919115771, https://openalex.org/W2997809650, https://openalex.org/W3110551393, https://openalex.org/W2780838211, https://openalex.org/W3034676907, https://openalex.org/W2963725249, https://openalex.org/W3105335547, https://openalex.org/W2019370496, https://openalex.org/W3023371261, https://openalex.org/W2731821979, https://openalex.org/W2070269132, https://openalex.org/W2962798895, https://openalex.org/W2740558313, https://openalex.org/W2551829638, https://openalex.org/W3160314846, https://openalex.org/W1849277567, https://openalex.org/W2737725206, https://openalex.org/W2613718673, https://openalex.org/W3034603197, https://openalex.org/W2752965000, https://openalex.org/W2117741877, https://openalex.org/W2882999943, https://openalex.org/W3028797339, https://openalex.org/W3116704196, https://openalex.org/W1496650988, https://openalex.org/W1898560071, https://openalex.org/W1993309459, https://openalex.org/W2411707397, https://openalex.org/W1616462885, https://openalex.org/W2883672875, https://openalex.org/W2957105406, https://openalex.org/W2948085278, https://openalex.org/W2963026686, https://openalex.org/W2138011018, https://openalex.org/W2773003563, https://openalex.org/W2808091730, https://openalex.org/W2990495699, https://openalex.org/W2127589108, https://openalex.org/W1954152232, https://openalex.org/W1552847225, https://openalex.org/W2557912764, https://openalex.org/W2290566097, https://openalex.org/W2162915993, https://openalex.org/W2883502031, https://openalex.org/W2961018736, https://openalex.org/W2985668663, https://openalex.org/W2765268259, https://openalex.org/W2235526797, https://openalex.org/W2797977484, https://openalex.org/W2293340461, https://openalex.org/W3034978746, https://openalex.org/W2963398644, https://openalex.org/W2763070548, https://openalex.org/W2964028976, https://openalex.org/W2970247844, https://openalex.org/W1903029394, https://openalex.org/W3000388098, https://openalex.org/W2950025228, https://openalex.org/W3118881191, https://openalex.org/W3011666149, https://openalex.org/W2554320282, https://openalex.org/W2884115684, https://openalex.org/W2998792609, https://openalex.org/W2797558164, https://openalex.org/W1663973292, https://openalex.org/W2963500702, https://openalex.org/W3109083691, https://openalex.org/W3099903704, https://openalex.org/W2964036919, https://openalex.org/W2789433008, https://openalex.org/W2995810454, https://openalex.org/W2885311373, https://openalex.org/W2398118205, https://openalex.org/W3087664992, https://openalex.org/W2963407932, https://openalex.org/W1966385142, https://openalex.org/W2196615847, https://openalex.org/W2990520530, https://openalex.org/W3035220232, https://openalex.org/W3009438181, https://openalex.org/W2604134068, https://openalex.org/W2289708887, https://openalex.org/W2780418809, https://openalex.org/W2962761264, https://openalex.org/W2936614765, https://openalex.org/W2467281799, https://openalex.org/W2202499615, https://openalex.org/W2295107390, https://openalex.org/W2748769660, https://openalex.org/W2466618734, https://openalex.org/W3149246122, https://openalex.org/W1929903369, https://openalex.org/W2789209438, https://openalex.org/W1967632700, https://openalex.org/W2963420686, https://openalex.org/W56385144, https://openalex.org/W2287418003, https://openalex.org/W2914924014, https://openalex.org/W2962691289, https://openalex.org/W2963066927, https://openalex.org/W2975317124, https://openalex.org/W1909952827, https://openalex.org/W2761785940, https://openalex.org/W3145865098, https://openalex.org/W1994213117, https://openalex.org/W3008809756, https://openalex.org/W2998619563, https://openalex.org/W3127164946, https://openalex.org/W2956335072, https://openalex.org/W3010977521, https://openalex.org/W2798381792, https://openalex.org/W3015070858, https://openalex.org/W12634471, https://openalex.org/W1928906481, https://openalex.org/W3109684201, https://openalex.org/W1960289438, https://openalex.org/W603908379, https://openalex.org/W2579318141, https://openalex.org/W2740620254, https://openalex.org/W2462457117, https://openalex.org/W2951464224, https://openalex.org/W2107726111, https://openalex.org/W2962742544, https://openalex.org/W2808269424, https://openalex.org/W2146897752, https://openalex.org/W3099206234, https://openalex.org/W3024152176, https://openalex.org/W3035367622, https://openalex.org/W2964193299, https://openalex.org/W2903811598, https://openalex.org/W2964350570, https://openalex.org/W2798365843, https://openalex.org/W2997426000, https://openalex.org/W2891951760, https://openalex.org/W3035607448, https://openalex.org/W2998345525, https://openalex.org/W3099665136, https://openalex.org/W2919291228, https://openalex.org/W2102605133, https://openalex.org/W3108870912, https://openalex.org/W2787684613, https://openalex.org/W2117539524, https://openalex.org/W2808178187, https://openalex.org/W2997300818, https://openalex.org/W2798913983, https://openalex.org/W3035316220, https://openalex.org/W3035524453, https://openalex.org/W2924114011, https://openalex.org/W3034382172, https://openalex.org/W1960777822, https://openalex.org/W2746642387, https://openalex.org/W2998418694, https://openalex.org/W2986821660, https://openalex.org/W2963393555, https://openalex.org/W2894608918, https://openalex.org/W2194011657, https://openalex.org/W2741910023, https://openalex.org/W2533598788, https://openalex.org/W2141200610, https://openalex.org/W1950136256, https://openalex.org/W1846799578, https://openalex.org/W3034601242, https://openalex.org/W2898012907, https://openalex.org/W2970507129, https://openalex.org/W2106999036, https://openalex.org/W2962933664, https://openalex.org/W2479109623, https://openalex.org/W1955942245, https://openalex.org/W2601789736 |
| referenced_works_count | 192 |
| abstract_inverted_index.a | 5, 18, 57, 84 |
| abstract_inverted_index.-- | 108 |
| abstract_inverted_index.In | 79, 116 |
| abstract_inverted_index.We | 136 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.by | 101, 138 |
| abstract_inverted_index.in | 10, 63, 66, 74 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.it | 56 |
| abstract_inverted_index.of | 21, 26, 37, 41, 87, 99, 124 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 51, 93 |
| abstract_inverted_index.we | 69, 82, 91, 118 |
| abstract_inverted_index.The | 24, 43 |
| abstract_inverted_index.and | 7, 13, 16, 46, 95, 112, 132, 143 |
| abstract_inverted_index.key | 122 |
| abstract_inverted_index.set | 20 |
| abstract_inverted_index.the | 97, 151 |
| abstract_inverted_index.two | 103 |
| abstract_inverted_index.FGIA | 27, 100 |
| abstract_inverted_index.also | 119 |
| abstract_inverted_index.deep | 64, 75 |
| abstract_inverted_index.from | 32, 150 |
| abstract_inverted_index.have | 70 |
| abstract_inverted_index.need | 147 |
| abstract_inverted_index.open | 144 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.task | 25 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.FGIA, | 125 |
| abstract_inverted_index.FGIA. | 78 |
| abstract_inverted_index.areas | 107 |
| abstract_inverted_index.birds | 38 |
| abstract_inverted_index.cars. | 42 |
| abstract_inverted_index.e.g., | 35 |
| abstract_inverted_index.field | 98 |
| abstract_inverted_index.image | 1, 53, 110, 114 |
| abstract_inverted_index.large | 47 |
| abstract_inverted_index.makes | 55 |
| abstract_inverted_index.other | 121 |
| abstract_inverted_index.paper | 81 |
| abstract_inverted_index.small | 44 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.where | 90 |
| abstract_inverted_index.which | 146 |
| abstract_inverted_index.years | 68 |
| abstract_inverted_index.(FGIA) | 3 |
| abstract_inverted_index.issues | 123 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.recent | 67 |
| abstract_inverted_index.review | 120 |
| abstract_inverted_index.survey | 86 |
| abstract_inverted_index.vision | 12 |
| abstract_inverted_index.visual | 30 |
| abstract_inverted_index.attempt | 92 |
| abstract_inverted_index.broaden | 96 |
| abstract_inverted_index.diverse | 19 |
| abstract_inverted_index.further | 148 |
| abstract_inverted_index.objects | 31 |
| abstract_inverted_index.pattern | 14 |
| abstract_inverted_index.powered | 77 |
| abstract_inverted_index.present | 83 |
| abstract_inverted_index.problem | 9 |
| abstract_inverted_index.related | 133 |
| abstract_inverted_index.several | 140 |
| abstract_inverted_index.species | 36 |
| abstract_inverted_index.targets | 28 |
| abstract_inverted_index.advances | 62 |
| abstract_inverted_index.analysis | 2, 54 |
| abstract_inverted_index.computer | 11 |
| abstract_inverted_index.conclude | 137 |
| abstract_inverted_index.datasets | 131 |
| abstract_inverted_index.inherent | 50 |
| abstract_inverted_index.learning | 76 |
| abstract_inverted_index.problem. | 59 |
| abstract_inverted_index.problems | 145 |
| abstract_inverted_index.progress | 73 |
| abstract_inverted_index.publicly | 128 |
| abstract_inverted_index.research | 106, 141 |
| abstract_inverted_index.addition, | 117 |
| abstract_inverted_index.advances, | 89 |
| abstract_inverted_index.analyzing | 29 |
| abstract_inverted_index.available | 129 |
| abstract_inverted_index.benchmark | 130 |
| abstract_inverted_index.learning, | 65 |
| abstract_inverted_index.re-define | 94 |
| abstract_inverted_index.underpins | 17 |
| abstract_inverted_index.variation | 49 |
| abstract_inverted_index.witnessed | 71 |
| abstract_inverted_index.community. | 152 |
| abstract_inverted_index.directions | 142 |
| abstract_inverted_index.real-world | 22 |
| abstract_inverted_index.remarkable | 72 |
| abstract_inverted_index.retrieval. | 115 |
| abstract_inverted_index.systematic | 85 |
| abstract_inverted_index.categories, | 34 |
| abstract_inverted_index.challenging | 58 |
| abstract_inverted_index.exploration | 149 |
| abstract_inverted_index.fundamental | 8, 104 |
| abstract_inverted_index.inter-class | 45 |
| abstract_inverted_index.intra-class | 48 |
| abstract_inverted_index.recognition | 111 |
| abstract_inverted_index.subordinate | 33 |
| abstract_inverted_index.Capitalizing | 60 |
| abstract_inverted_index.Fine-grained | 0 |
| abstract_inverted_index.fine-grained | 52, 105, 109, 113 |
| abstract_inverted_index.highlighting | 139 |
| abstract_inverted_index.longstanding | 6 |
| abstract_inverted_index.recognition, | 15 |
| abstract_inverted_index.applications. | 23, 135 |
| abstract_inverted_index.consolidating | 102 |
| abstract_inverted_index.domain-specific | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |