Fine-Grained Ultra-Short-Term Wind Power Forecasting Based on Temporal Fusion Transformers Integrated with Turbine Power Time Series Clustering Article Swipe
Can Zhang
,
Xianyong Xiao
,
Ying Wang
,
Zhengmeng Hou
,
Shudong Huang
,
Wenxi Hu
,
Ming Hu
,
Rui Huang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5156264
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5156264
Related Topics
Concepts
Wind power forecasting
Cluster analysis
Term (time)
Wind power
Turbine
Fusion
Time series
Series (stratigraphy)
Computer science
Environmental science
Meteorology
Power (physics)
Electric power system
Engineering
Artificial intelligence
Electrical engineering
Aerospace engineering
Geography
Geology
Machine learning
Physics
Paleontology
Philosophy
Linguistics
Quantum mechanics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5156264
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407963492
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407963492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5156264Digital Object Identifier
- Title
-
Fine-Grained Ultra-Short-Term Wind Power Forecasting Based on Temporal Fusion Transformers Integrated with Turbine Power Time Series ClusteringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Can Zhang, Xianyong Xiao, Ying Wang, Zhengmeng Hou, Shudong Huang, Wenxi Hu, Ming Hu, Rui HuangList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5156264Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5156264Direct OA link when available
- Concepts
-
Wind power forecasting, Cluster analysis, Term (time), Wind power, Turbine, Fusion, Time series, Series (stratigraphy), Computer science, Environmental science, Meteorology, Power (physics), Electric power system, Engineering, Artificial intelligence, Electrical engineering, Aerospace engineering, Geography, Geology, Machine learning, Physics, Paleontology, Philosophy, Linguistics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407963492 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5156264 |
| ids.doi | https://doi.org/10.2139/ssrn.5156264 |
| ids.openalex | https://openalex.org/W4407963492 |
| fwci | 0.0 |
| type | preprint |
| title | Fine-Grained Ultra-Short-Term Wind Power Forecasting Based on Temporal Fusion Transformers Integrated with Turbine Power Time Series Clustering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9828000068664551 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781084341 |
| concepts[0].level | 4 |
| concepts[0].score | 0.6414955854415894 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2583670 |
| concepts[0].display_name | Wind power forecasting |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5982434153556824 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C61797465 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5894196033477783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[2].display_name | Term (time) |
| concepts[3].id | https://openalex.org/C78600449 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5684719681739807 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[3].display_name | Wind power |
| concepts[4].id | https://openalex.org/C2778449969 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5129916071891785 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q130760 |
| concepts[4].display_name | Turbine |
| concepts[5].id | https://openalex.org/C158525013 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4861464202404022 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[5].display_name | Fusion |
| concepts[6].id | https://openalex.org/C151406439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4834797978401184 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time series |
| concepts[7].id | https://openalex.org/C143724316 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4318036437034607 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[7].display_name | Series (stratigraphy) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.39929115772247314 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C39432304 |
| concepts[9].level | 0 |
| concepts[9].score | 0.39567360281944275 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[9].display_name | Environmental science |
| concepts[10].id | https://openalex.org/C153294291 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36579975485801697 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[10].display_name | Meteorology |
| concepts[11].id | https://openalex.org/C163258240 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3158905506134033 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[11].display_name | Power (physics) |
| concepts[12].id | https://openalex.org/C89227174 |
| concepts[12].level | 3 |
| concepts[12].score | 0.2751480042934418 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[12].display_name | Electric power system |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22765642404556274 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16276302933692932 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C119599485 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14792466163635254 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[15].display_name | Electrical engineering |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12294450402259827 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.12211915850639343 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.09462207555770874 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C119857082 |
| concepts[19].level | 1 |
| concepts[19].score | 0.09070053696632385 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[19].display_name | Machine learning |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.08151969313621521 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C138885662 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[22].display_name | Philosophy |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| concepts[24].id | https://openalex.org/C62520636 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[24].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/wind-power-forecasting |
| keywords[0].score | 0.6414955854415894 |
| keywords[0].display_name | Wind power forecasting |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.5982434153556824 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/term |
| keywords[2].score | 0.5894196033477783 |
| keywords[2].display_name | Term (time) |
| keywords[3].id | https://openalex.org/keywords/wind-power |
| keywords[3].score | 0.5684719681739807 |
| keywords[3].display_name | Wind power |
| keywords[4].id | https://openalex.org/keywords/turbine |
| keywords[4].score | 0.5129916071891785 |
| keywords[4].display_name | Turbine |
| keywords[5].id | https://openalex.org/keywords/fusion |
| keywords[5].score | 0.4861464202404022 |
| keywords[5].display_name | Fusion |
| keywords[6].id | https://openalex.org/keywords/time-series |
| keywords[6].score | 0.4834797978401184 |
| keywords[6].display_name | Time series |
| keywords[7].id | https://openalex.org/keywords/series |
| keywords[7].score | 0.4318036437034607 |
| keywords[7].display_name | Series (stratigraphy) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.39929115772247314 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/environmental-science |
| keywords[9].score | 0.39567360281944275 |
| keywords[9].display_name | Environmental science |
| keywords[10].id | https://openalex.org/keywords/meteorology |
| keywords[10].score | 0.36579975485801697 |
| keywords[10].display_name | Meteorology |
| keywords[11].id | https://openalex.org/keywords/power |
| keywords[11].score | 0.3158905506134033 |
| keywords[11].display_name | Power (physics) |
| keywords[12].id | https://openalex.org/keywords/electric-power-system |
| keywords[12].score | 0.2751480042934418 |
| keywords[12].display_name | Electric power system |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.22765642404556274 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.16276302933692932 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/electrical-engineering |
| keywords[15].score | 0.14792466163635254 |
| keywords[15].display_name | Electrical engineering |
| keywords[16].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[16].score | 0.12294450402259827 |
| keywords[16].display_name | Aerospace engineering |
| keywords[17].id | https://openalex.org/keywords/geography |
| keywords[17].score | 0.12211915850639343 |
| keywords[17].display_name | Geography |
| keywords[18].id | https://openalex.org/keywords/geology |
| keywords[18].score | 0.09462207555770874 |
| keywords[18].display_name | Geology |
| keywords[19].id | https://openalex.org/keywords/machine-learning |
| keywords[19].score | 0.09070053696632385 |
| keywords[19].display_name | Machine learning |
| keywords[20].id | https://openalex.org/keywords/physics |
| keywords[20].score | 0.08151969313621521 |
| keywords[20].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5156264 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5156264 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111426761 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Can Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Can Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041666549 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5926-4068 |
| authorships[1].author.display_name | Xianyong Xiao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianyong Xiao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100347087 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3684-7014 |
| authorships[2].author.display_name | Ying Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070998021 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8544-7172 |
| authorships[3].author.display_name | Zhengmeng Hou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael Zhengmeng Hou |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026312781 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6848-5460 |
| authorships[4].author.display_name | Shudong Huang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shudong Huang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101500381 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1609-784X |
| authorships[5].author.display_name | Wenxi Hu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wenxi Hu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101531527 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ming Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ming Hu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5003637819 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5952-2936 |
| authorships[7].author.display_name | Rui Huang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rui Huang |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5156264 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fine-Grained Ultra-Short-Term Wind Power Forecasting Based on Temporal Fusion Transformers Integrated with Turbine Power Time Series Clustering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9828000068664551 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3214712242, https://openalex.org/W2542556245, https://openalex.org/W3204461065, https://openalex.org/W2034182965, https://openalex.org/W2626641865, https://openalex.org/W1965417009, https://openalex.org/W2246158493, https://openalex.org/W2018320994, https://openalex.org/W2460685830, https://openalex.org/W2738547440 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5156264 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5156264 |
| primary_location.id | doi:10.2139/ssrn.5156264 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5156264 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.05561722 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |