Fine-grained Visual Classification with High-temperature Refinement and Background Suppression Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.06442
Fine-grained visual classification is a challenging task due to the high similarity between categories and distinct differences among data within one single category. To address the challenges, previous strategies have focused on localizing subtle discrepancies between categories and enhencing the discriminative features in them. However, the background also provides important information that can tell the model which features are unnecessary or even harmful for classification, and models that rely too heavily on subtle features may overlook global features and contextual information. In this paper, we propose a novel network called ``High-temperaturE Refinement and Background Suppression'' (HERBS), which consists of two modules, namely, the high-temperature refinement module and the background suppression module, for extracting discriminative features and suppressing background noise, respectively. The high-temperature refinement module allows the model to learn the appropriate feature scales by refining the features map at different scales and improving the learning of diverse features. And, the background suppression module first splits the features map into foreground and background using classification confidence scores and suppresses feature values in low-confidence areas while enhancing discriminative features. The experimental results show that the proposed HERBS effectively fuses features of varying scales, suppresses background noise, discriminative features at appropriate scales for fine-grained visual classification.The proposed method achieves state-of-the-art performance on the CUB-200-2011 and NABirds benchmarks, surpassing 93% accuracy on both datasets. Thus, HERBS presents a promising solution for improving the performance of fine-grained visual classification tasks. code: https://github.com/chou141253/FGVC-HERBS
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.06442
- https://arxiv.org/pdf/2303.06442
- OA Status
- green
- Cited By
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4324314567
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4324314567Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.06442Digital Object Identifier
- Title
-
Fine-grained Visual Classification with High-temperature Refinement and Background SuppressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-11Full publication date if available
- Authors
-
Po‐Yung Chou, Yu-Yung Kao, Cheng‐Hung LinList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.06442Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.06442Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.06442Direct OA link when available
- Concepts
-
Discriminative model, Computer science, Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Similarity (geometry), Noise (video), Task (project management), Code (set theory), Machine learning, Image (mathematics), Set (abstract data type), Philosophy, Programming language, Economics, Management, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 17, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4324314567 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.06442 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.06442 |
| ids.openalex | https://openalex.org/W4324314567 |
| fwci | |
| type | preprint |
| title | Fine-grained Visual Classification with High-temperature Refinement and Background Suppression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9896000027656555 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9675999879837036 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9577631950378418 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7348024845123291 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6821491718292236 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6155056953430176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6036242842674255 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C103278499 |
| concepts[5].level | 3 |
| concepts[5].score | 0.563964307308197 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[5].display_name | Similarity (geometry) |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5457356572151184 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4609788656234741 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C2776760102 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42753979563713074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[8].display_name | Code (set theory) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41830772161483765 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.08165547251701355 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07445752620697021 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C187736073 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[15].display_name | Management |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.9577631950378418 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7348024845123291 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6821491718292236 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.6155056953430176 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.6036242842674255 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/similarity |
| keywords[5].score | 0.563964307308197 |
| keywords[5].display_name | Similarity (geometry) |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.5457356572151184 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/task |
| keywords[7].score | 0.4609788656234741 |
| keywords[7].display_name | Task (project management) |
| keywords[8].id | https://openalex.org/keywords/code |
| keywords[8].score | 0.42753979563713074 |
| keywords[8].display_name | Code (set theory) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.41830772161483765 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.08165547251701355 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.07445752620697021 |
| keywords[11].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.06442 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.06442 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.06442 |
| locations[1].id | doi:10.48550/arxiv.2303.06442 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.06442 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021001528 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Po‐Yung Chou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chou, Po-Yung |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5109491372 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yu-Yung Kao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kao, Yu-Yung |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101712029 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7278-093X |
| authorships[2].author.display_name | Cheng‐Hung Lin |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Lin, Cheng-Hung |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.06442 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-16T00:00:00 |
| display_name | Fine-grained Visual Classification with High-temperature Refinement and Background Suppression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9896000027656555 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W1482209366, https://openalex.org/W2110523656, https://openalex.org/W2521627374, https://openalex.org/W2981954115 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 17 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.06442 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.06442 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.06442 |
| primary_location.id | pmh:oai:arXiv.org:2303.06442 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.06442 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.06442 |
| publication_date | 2023-03-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 86, 223 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.at | 138, 196 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 42, 170 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 98, 145, 188, 230 |
| abstract_inverted_index.on | 31, 71, 208, 217 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 8, 127 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.93% | 215 |
| abstract_inverted_index.The | 120, 177 |
| abstract_inverted_index.and | 14, 37, 65, 78, 92, 106, 115, 141, 160, 166, 211 |
| abstract_inverted_index.are | 58 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.due | 7 |
| abstract_inverted_index.for | 63, 111, 199, 226 |
| abstract_inverted_index.map | 137, 157 |
| abstract_inverted_index.may | 74 |
| abstract_inverted_index.one | 20 |
| abstract_inverted_index.the | 9, 25, 39, 45, 54, 102, 107, 125, 129, 135, 143, 149, 155, 182, 209, 228 |
| abstract_inverted_index.too | 69 |
| abstract_inverted_index.two | 99 |
| abstract_inverted_index.And, | 148 |
| abstract_inverted_index.also | 47 |
| abstract_inverted_index.both | 218 |
| abstract_inverted_index.data | 18 |
| abstract_inverted_index.even | 61 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.high | 10 |
| abstract_inverted_index.into | 158 |
| abstract_inverted_index.rely | 68 |
| abstract_inverted_index.show | 180 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.tell | 53 |
| abstract_inverted_index.that | 51, 67, 181 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.HERBS | 184, 221 |
| abstract_inverted_index.Thus, | 220 |
| abstract_inverted_index.among | 17 |
| abstract_inverted_index.areas | 172 |
| abstract_inverted_index.code: | 235 |
| abstract_inverted_index.first | 153 |
| abstract_inverted_index.fuses | 186 |
| abstract_inverted_index.learn | 128 |
| abstract_inverted_index.model | 55, 126 |
| abstract_inverted_index.novel | 87 |
| abstract_inverted_index.them. | 43 |
| abstract_inverted_index.using | 162 |
| abstract_inverted_index.which | 56, 96 |
| abstract_inverted_index.while | 173 |
| abstract_inverted_index.allows | 124 |
| abstract_inverted_index.called | 89 |
| abstract_inverted_index.global | 76 |
| abstract_inverted_index.method | 204 |
| abstract_inverted_index.models | 66 |
| abstract_inverted_index.module | 105, 123, 152 |
| abstract_inverted_index.noise, | 118, 193 |
| abstract_inverted_index.paper, | 83 |
| abstract_inverted_index.scales | 132, 140, 198 |
| abstract_inverted_index.scores | 165 |
| abstract_inverted_index.single | 21 |
| abstract_inverted_index.splits | 154 |
| abstract_inverted_index.subtle | 33, 72 |
| abstract_inverted_index.tasks. | 234 |
| abstract_inverted_index.values | 169 |
| abstract_inverted_index.visual | 1, 201, 232 |
| abstract_inverted_index.within | 19 |
| abstract_inverted_index.NABirds | 212 |
| abstract_inverted_index.address | 24 |
| abstract_inverted_index.between | 12, 35 |
| abstract_inverted_index.diverse | 146 |
| abstract_inverted_index.feature | 131, 168 |
| abstract_inverted_index.focused | 30 |
| abstract_inverted_index.harmful | 62 |
| abstract_inverted_index.heavily | 70 |
| abstract_inverted_index.module, | 110 |
| abstract_inverted_index.namely, | 101 |
| abstract_inverted_index.network | 88 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.results | 179 |
| abstract_inverted_index.scales, | 190 |
| abstract_inverted_index.varying | 189 |
| abstract_inverted_index.(HERBS), | 95 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.accuracy | 216 |
| abstract_inverted_index.achieves | 205 |
| abstract_inverted_index.consists | 97 |
| abstract_inverted_index.distinct | 15 |
| abstract_inverted_index.features | 41, 57, 73, 77, 114, 136, 156, 187, 195 |
| abstract_inverted_index.learning | 144 |
| abstract_inverted_index.modules, | 100 |
| abstract_inverted_index.overlook | 75 |
| abstract_inverted_index.presents | 222 |
| abstract_inverted_index.previous | 27 |
| abstract_inverted_index.proposed | 183, 203 |
| abstract_inverted_index.provides | 48 |
| abstract_inverted_index.refining | 134 |
| abstract_inverted_index.solution | 225 |
| abstract_inverted_index.category. | 22 |
| abstract_inverted_index.datasets. | 219 |
| abstract_inverted_index.different | 139 |
| abstract_inverted_index.enhancing | 174 |
| abstract_inverted_index.enhencing | 38 |
| abstract_inverted_index.features. | 147, 176 |
| abstract_inverted_index.important | 49 |
| abstract_inverted_index.improving | 142, 227 |
| abstract_inverted_index.promising | 224 |
| abstract_inverted_index.Background | 93 |
| abstract_inverted_index.Refinement | 91 |
| abstract_inverted_index.background | 46, 108, 117, 150, 161, 192 |
| abstract_inverted_index.categories | 13, 36 |
| abstract_inverted_index.confidence | 164 |
| abstract_inverted_index.contextual | 79 |
| abstract_inverted_index.extracting | 112 |
| abstract_inverted_index.foreground | 159 |
| abstract_inverted_index.localizing | 32 |
| abstract_inverted_index.refinement | 104, 122 |
| abstract_inverted_index.similarity | 11 |
| abstract_inverted_index.strategies | 28 |
| abstract_inverted_index.suppresses | 167, 191 |
| abstract_inverted_index.surpassing | 214 |
| abstract_inverted_index.appropriate | 130, 197 |
| abstract_inverted_index.benchmarks, | 213 |
| abstract_inverted_index.challenges, | 26 |
| abstract_inverted_index.challenging | 5 |
| abstract_inverted_index.differences | 16 |
| abstract_inverted_index.effectively | 185 |
| abstract_inverted_index.information | 50 |
| abstract_inverted_index.performance | 207, 229 |
| abstract_inverted_index.suppressing | 116 |
| abstract_inverted_index.suppression | 109, 151 |
| abstract_inverted_index.unnecessary | 59 |
| abstract_inverted_index.CUB-200-2011 | 210 |
| abstract_inverted_index.Fine-grained | 0 |
| abstract_inverted_index.experimental | 178 |
| abstract_inverted_index.fine-grained | 200, 231 |
| abstract_inverted_index.information. | 80 |
| abstract_inverted_index.Suppression'' | 94 |
| abstract_inverted_index.discrepancies | 34 |
| abstract_inverted_index.respectively. | 119 |
| abstract_inverted_index.classification | 2, 163, 233 |
| abstract_inverted_index.discriminative | 40, 113, 175, 194 |
| abstract_inverted_index.low-confidence | 171 |
| abstract_inverted_index.classification, | 64 |
| abstract_inverted_index.high-temperature | 103, 121 |
| abstract_inverted_index.state-of-the-art | 206 |
| abstract_inverted_index.``High-temperaturE | 90 |
| abstract_inverted_index.classification.The | 202 |
| abstract_inverted_index.https://github.com/chou141253/FGVC-HERBS | 236 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |