Fine scale spatial mapping of urban malaria prevalence for microstratification in an urban area of Ghana Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.03.03.25322260
Background Malaria in urban areas is a growing concern in most sub-Saharan African countries. The growing threats of Anopheles stephensi and insecticide resistance magnify this concern and hamper elimination efforts. It is therefore imperative to identify areas, within urban settings, of high-risk of malaria to help better target interventions. Methods In this study, we combined a set of environmental, climatic, and urban covariates with observed data from a malaria prevalence study and used geospatial methods to predict malaria risk in the Greater Accra Region of Ghana. Georeferenced data from 12,371 surveyed children aged between 6 months and 10 years were included in the analysis. Results Predicted malaria prevalence in this age group ranged from 0 to 52%. Satellite-driven data on tasselled cap brightness, enhanced vegetation index and a combination of urban covariates were predictive of malaria prevalence in the study region. We produced a map that quantified the probability of malaria prevalence exceeding 10%. Conclusions This map revealed areas within the districts earmarked for malaria elimination that have high malaria risk. This work is providing evidence for use by the National Malaria Elimination Program and District Health Managers in planning and deploying appropriate malaria control strategies. Summary box What is already known? Reduction in malaria incidence globally has stalled in the past few years. Malaria endemic countries are being encouraged to use local data to inform appropriate malaria control strategies. Malaria prevalence studies seldomly provide estimates below regional administrative levels. The availability of environmental, climatic, and socioeconomic factors as well as computational methods has enhanced predictive methods that quantifies the disproportionate variation of malaria risk between and within urban areas. What are the new findings? Predictive maps of malaria at high spatial resolutions such as 100m allows for visualizing fine-scale heterogeneity of malaria in neighbourhoods. Inclusion of urban covariates in models predicting malaria risk in urbanized communities helps to account for socioeconomic disparities and their effect on malaria risk. What do the new findings imply? Malaria control efforts needs to be guided by highly granular data. Systems to generate granular data on a continuous basis needs to be strengthen in malaria endemic countries, especially, to better inform deployment of appropriate interventions in resource constraint settings. This type of analysis provide information on which intervention is appropriate in a specified geographical area.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.03.03.25322260
- https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdf
- OA Status
- green
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408139031
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408139031Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.03.03.25322260Digital Object Identifier
- Title
-
Fine scale spatial mapping of urban malaria prevalence for microstratification in an urban area of GhanaWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Samuel Oppong, David Dosoo, Nana Yaw Peprah, George Asumah Adu, Wahjib Mohammed, Jennifer Rozier, Kingsley Kayan, Michael McPhail, Punam Amratia, Kefyalew Addis Alene, Kwaku Poku Asante, Peter W. Gething, Keziah MalmList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.03.03.25322260Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdfDirect OA link when available
- Concepts
-
Geography, Scale (ratio), Malaria, Cartography, Socioeconomics, Environmental health, Regional science, Medicine, Sociology, ImmunologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408139031 |
|---|---|
| doi | https://doi.org/10.1101/2025.03.03.25322260 |
| ids.doi | https://doi.org/10.1101/2025.03.03.25322260 |
| ids.openalex | https://openalex.org/W4408139031 |
| fwci | |
| type | preprint |
| title | Fine scale spatial mapping of urban malaria prevalence for microstratification in an urban area of Ghana |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9433000087738037 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| topics[1].id | https://openalex.org/T10166 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.932200014591217 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Mosquito-borne diseases and control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205649164 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6931188702583313 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[0].display_name | Geography |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6302494406700134 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C2778048844 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6179438829421997 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12156 |
| concepts[2].display_name | Malaria |
| concepts[3].id | https://openalex.org/C58640448 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5069180130958557 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[3].display_name | Cartography |
| concepts[4].id | https://openalex.org/C45355965 |
| concepts[4].level | 1 |
| concepts[4].score | 0.411376416683197 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1643441 |
| concepts[4].display_name | Socioeconomics |
| concepts[5].id | https://openalex.org/C99454951 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4042251706123352 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[5].display_name | Environmental health |
| concepts[6].id | https://openalex.org/C148383697 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3281903862953186 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1781695 |
| concepts[6].display_name | Regional science |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.21019339561462402 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C144024400 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08253437280654907 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[8].display_name | Sociology |
| concepts[9].id | https://openalex.org/C203014093 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[9].display_name | Immunology |
| keywords[0].id | https://openalex.org/keywords/geography |
| keywords[0].score | 0.6931188702583313 |
| keywords[0].display_name | Geography |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.6302494406700134 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/malaria |
| keywords[2].score | 0.6179438829421997 |
| keywords[2].display_name | Malaria |
| keywords[3].id | https://openalex.org/keywords/cartography |
| keywords[3].score | 0.5069180130958557 |
| keywords[3].display_name | Cartography |
| keywords[4].id | https://openalex.org/keywords/socioeconomics |
| keywords[4].score | 0.411376416683197 |
| keywords[4].display_name | Socioeconomics |
| keywords[5].id | https://openalex.org/keywords/environmental-health |
| keywords[5].score | 0.4042251706123352 |
| keywords[5].display_name | Environmental health |
| keywords[6].id | https://openalex.org/keywords/regional-science |
| keywords[6].score | 0.3281903862953186 |
| keywords[6].display_name | Regional science |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.21019339561462402 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/sociology |
| keywords[8].score | 0.08253437280654907 |
| keywords[8].display_name | Sociology |
| language | en |
| locations[0].id | doi:10.1101/2025.03.03.25322260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.03.03.25322260 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027172596 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5581-4613 |
| authorships[0].author.display_name | Samuel Oppong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samuel Kweku Oppong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075727590 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5152-462X |
| authorships[1].author.display_name | David Dosoo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Kwame Dosoo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032764828 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1633-7911 |
| authorships[2].author.display_name | Nana Yaw Peprah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nana Yaw Peprah |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5014293131 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8412-7954 |
| authorships[3].author.display_name | George Asumah Adu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | George Asumah Adu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5075897128 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wahjib Mohammed |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wahjib Mohammed |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053100059 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2610-7557 |
| authorships[5].author.display_name | Jennifer Rozier |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jennifer Rozier |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5071719099 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Kingsley Kayan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kingsley Kayan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5015650142 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9365-5289 |
| authorships[7].author.display_name | Michael McPhail |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Michael McPhail |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5058459891 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5128-3288 |
| authorships[8].author.display_name | Punam Amratia |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Punam Amratia |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5010826389 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1904-4682 |
| authorships[9].author.display_name | Kefyalew Addis Alene |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Kefyalew Addis Alene |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5043850672 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9158-351X |
| authorships[10].author.display_name | Kwaku Poku Asante |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Kwaku Poku Asante |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5088968784 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-6759-5449 |
| authorships[11].author.display_name | Peter W. Gething |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Peter W Gething |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5058019143 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-0190-0820 |
| authorships[12].author.display_name | Keziah Malm |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Keziah L Malm |
| authorships[12].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fine scale spatial mapping of urban malaria prevalence for microstratification in an urban area of Ghana |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9433000087738037 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W2115261803, https://openalex.org/W4367362025, https://openalex.org/W2108574175, https://openalex.org/W2347627655, https://openalex.org/W1477123016, https://openalex.org/W2386208584, https://openalex.org/W2226154164, https://openalex.org/W2368864186, https://openalex.org/W3122661184, https://openalex.org/W2371118503 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.03.03.25322260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.03.03.25322260 |
| primary_location.id | doi:10.1101/2025.03.03.25322260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/03/04/2025.03.03.25322260.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.03.03.25322260 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3196374306, https://openalex.org/W2068824974, https://openalex.org/W4377982070, https://openalex.org/W4317497636, https://openalex.org/W4385804446, https://openalex.org/W4235065397, https://openalex.org/W4362640242, https://openalex.org/W4221082281, https://openalex.org/W4402923013, https://openalex.org/W2797413390, https://openalex.org/W2043962305, https://openalex.org/W4315490235, https://openalex.org/W2340515955, https://openalex.org/W1837874438, https://openalex.org/W2621167556, https://openalex.org/W4243261235, https://openalex.org/W2952516441, https://openalex.org/W2074074333, https://openalex.org/W3012666603, https://openalex.org/W2472555892, https://openalex.org/W3119742367, https://openalex.org/W2496117949, https://openalex.org/W4389475740, https://openalex.org/W4230351332, https://openalex.org/W4296993687, https://openalex.org/W2104248532, https://openalex.org/W2102293830, https://openalex.org/W2580594969, https://openalex.org/W2080406837, https://openalex.org/W3215750412 |
| referenced_works_count | 30 |
| abstract_inverted_index.0 | 115 |
| abstract_inverted_index.6 | 95 |
| abstract_inverted_index.a | 7, 56, 68, 128, 144, 343, 378 |
| abstract_inverted_index.10 | 98 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.It | 31 |
| abstract_inverted_index.We | 142 |
| abstract_inverted_index.as | 249, 251, 285 |
| abstract_inverted_index.at | 280 |
| abstract_inverted_index.be | 331, 348 |
| abstract_inverted_index.by | 179, 333 |
| abstract_inverted_index.do | 321 |
| abstract_inverted_index.in | 3, 10, 80, 102, 109, 138, 189, 204, 210, 294, 300, 305, 350, 362, 377 |
| abstract_inverted_index.is | 6, 32, 174, 200, 375 |
| abstract_inverted_index.of | 18, 41, 43, 58, 85, 130, 135, 150, 243, 263, 278, 292, 297, 359, 368 |
| abstract_inverted_index.on | 120, 317, 342, 372 |
| abstract_inverted_index.to | 35, 45, 76, 116, 221, 225, 309, 330, 338, 347, 355 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.The | 15, 241 |
| abstract_inverted_index.age | 111 |
| abstract_inverted_index.and | 21, 27, 61, 72, 97, 127, 185, 191, 246, 267, 314 |
| abstract_inverted_index.are | 218, 272 |
| abstract_inverted_index.box | 198 |
| abstract_inverted_index.cap | 122 |
| abstract_inverted_index.few | 213 |
| abstract_inverted_index.for | 164, 177, 288, 311 |
| abstract_inverted_index.has | 208, 254 |
| abstract_inverted_index.map | 145, 157 |
| abstract_inverted_index.new | 274, 323 |
| abstract_inverted_index.set | 57 |
| abstract_inverted_index.the | 81, 103, 139, 148, 161, 180, 211, 260, 273, 322 |
| abstract_inverted_index.use | 178, 222 |
| abstract_inverted_index.10%. | 154 |
| abstract_inverted_index.100m | 286 |
| abstract_inverted_index.52%. | 117 |
| abstract_inverted_index.This | 156, 172, 366 |
| abstract_inverted_index.What | 199, 271, 320 |
| abstract_inverted_index.aged | 93 |
| abstract_inverted_index.data | 66, 88, 119, 224, 341 |
| abstract_inverted_index.from | 67, 89, 114 |
| abstract_inverted_index.have | 168 |
| abstract_inverted_index.help | 46 |
| abstract_inverted_index.high | 169, 281 |
| abstract_inverted_index.maps | 277 |
| abstract_inverted_index.most | 11 |
| abstract_inverted_index.past | 212 |
| abstract_inverted_index.risk | 79, 265, 304 |
| abstract_inverted_index.such | 284 |
| abstract_inverted_index.that | 146, 167, 258 |
| abstract_inverted_index.this | 25, 52, 110 |
| abstract_inverted_index.type | 367 |
| abstract_inverted_index.used | 73 |
| abstract_inverted_index.well | 250 |
| abstract_inverted_index.were | 100, 133 |
| abstract_inverted_index.with | 64 |
| abstract_inverted_index.work | 173 |
| abstract_inverted_index.Accra | 83 |
| abstract_inverted_index.area. | 381 |
| abstract_inverted_index.areas | 5, 159 |
| abstract_inverted_index.basis | 345 |
| abstract_inverted_index.being | 219 |
| abstract_inverted_index.below | 237 |
| abstract_inverted_index.data. | 336 |
| abstract_inverted_index.group | 112 |
| abstract_inverted_index.helps | 308 |
| abstract_inverted_index.index | 126 |
| abstract_inverted_index.local | 223 |
| abstract_inverted_index.needs | 329, 346 |
| abstract_inverted_index.risk. | 171, 319 |
| abstract_inverted_index.study | 71, 140 |
| abstract_inverted_index.their | 315 |
| abstract_inverted_index.urban | 4, 39, 62, 131, 269, 298 |
| abstract_inverted_index.which | 373 |
| abstract_inverted_index.years | 99 |
| abstract_inverted_index.12,371 | 90 |
| abstract_inverted_index.Ghana. | 86 |
| abstract_inverted_index.Health | 187 |
| abstract_inverted_index.Region | 84 |
| abstract_inverted_index.allows | 287 |
| abstract_inverted_index.areas, | 37 |
| abstract_inverted_index.areas. | 270 |
| abstract_inverted_index.better | 47, 356 |
| abstract_inverted_index.effect | 316 |
| abstract_inverted_index.guided | 332 |
| abstract_inverted_index.hamper | 28 |
| abstract_inverted_index.highly | 334 |
| abstract_inverted_index.imply? | 325 |
| abstract_inverted_index.inform | 226, 357 |
| abstract_inverted_index.known? | 202 |
| abstract_inverted_index.models | 301 |
| abstract_inverted_index.months | 96 |
| abstract_inverted_index.ranged | 113 |
| abstract_inverted_index.study, | 53 |
| abstract_inverted_index.target | 48 |
| abstract_inverted_index.within | 38, 160, 268 |
| abstract_inverted_index.years. | 214 |
| abstract_inverted_index.African | 13 |
| abstract_inverted_index.Greater | 82 |
| abstract_inverted_index.Malaria | 2, 182, 215, 231, 326 |
| abstract_inverted_index.Methods | 50 |
| abstract_inverted_index.Program | 184 |
| abstract_inverted_index.Results | 105 |
| abstract_inverted_index.Summary | 197 |
| abstract_inverted_index.Systems | 337 |
| abstract_inverted_index.account | 310 |
| abstract_inverted_index.already | 201 |
| abstract_inverted_index.between | 94, 266 |
| abstract_inverted_index.concern | 9, 26 |
| abstract_inverted_index.control | 195, 229, 327 |
| abstract_inverted_index.efforts | 328 |
| abstract_inverted_index.endemic | 216, 352 |
| abstract_inverted_index.factors | 248 |
| abstract_inverted_index.growing | 8, 16 |
| abstract_inverted_index.levels. | 240 |
| abstract_inverted_index.magnify | 24 |
| abstract_inverted_index.malaria | 44, 69, 78, 107, 136, 151, 165, 170, 194, 205, 228, 264, 279, 293, 303, 318, 351 |
| abstract_inverted_index.methods | 75, 253, 257 |
| abstract_inverted_index.predict | 77 |
| abstract_inverted_index.provide | 235, 370 |
| abstract_inverted_index.region. | 141 |
| abstract_inverted_index.spatial | 282 |
| abstract_inverted_index.stalled | 209 |
| abstract_inverted_index.studies | 233 |
| abstract_inverted_index.threats | 17 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.District | 186 |
| abstract_inverted_index.Managers | 188 |
| abstract_inverted_index.National | 181 |
| abstract_inverted_index.analysis | 369 |
| abstract_inverted_index.children | 92 |
| abstract_inverted_index.combined | 55 |
| abstract_inverted_index.efforts. | 30 |
| abstract_inverted_index.enhanced | 124, 255 |
| abstract_inverted_index.evidence | 176 |
| abstract_inverted_index.findings | 324 |
| abstract_inverted_index.generate | 339 |
| abstract_inverted_index.globally | 207 |
| abstract_inverted_index.granular | 335, 340 |
| abstract_inverted_index.identify | 36 |
| abstract_inverted_index.included | 101 |
| abstract_inverted_index.observed | 65 |
| abstract_inverted_index.planning | 190 |
| abstract_inverted_index.produced | 143 |
| abstract_inverted_index.regional | 238 |
| abstract_inverted_index.resource | 363 |
| abstract_inverted_index.revealed | 158 |
| abstract_inverted_index.seldomly | 234 |
| abstract_inverted_index.surveyed | 91 |
| abstract_inverted_index.Anopheles | 19 |
| abstract_inverted_index.Inclusion | 296 |
| abstract_inverted_index.Predicted | 106 |
| abstract_inverted_index.Reduction | 203 |
| abstract_inverted_index.analysis. | 104 |
| abstract_inverted_index.climatic, | 60, 245 |
| abstract_inverted_index.countries | 217 |
| abstract_inverted_index.deploying | 192 |
| abstract_inverted_index.districts | 162 |
| abstract_inverted_index.earmarked | 163 |
| abstract_inverted_index.estimates | 236 |
| abstract_inverted_index.exceeding | 153 |
| abstract_inverted_index.findings? | 275 |
| abstract_inverted_index.high-risk | 42 |
| abstract_inverted_index.incidence | 206 |
| abstract_inverted_index.providing | 175 |
| abstract_inverted_index.settings, | 40 |
| abstract_inverted_index.settings. | 365 |
| abstract_inverted_index.specified | 379 |
| abstract_inverted_index.stephensi | 20 |
| abstract_inverted_index.tasselled | 121 |
| abstract_inverted_index.therefore | 33 |
| abstract_inverted_index.urbanized | 306 |
| abstract_inverted_index.variation | 262 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Predictive | 276 |
| abstract_inverted_index.constraint | 364 |
| abstract_inverted_index.continuous | 344 |
| abstract_inverted_index.countries, | 353 |
| abstract_inverted_index.countries. | 14 |
| abstract_inverted_index.covariates | 63, 132, 299 |
| abstract_inverted_index.deployment | 358 |
| abstract_inverted_index.encouraged | 220 |
| abstract_inverted_index.fine-scale | 290 |
| abstract_inverted_index.geospatial | 74 |
| abstract_inverted_index.imperative | 34 |
| abstract_inverted_index.predicting | 302 |
| abstract_inverted_index.predictive | 134, 256 |
| abstract_inverted_index.prevalence | 70, 108, 137, 152, 232 |
| abstract_inverted_index.quantified | 147 |
| abstract_inverted_index.quantifies | 259 |
| abstract_inverted_index.resistance | 23 |
| abstract_inverted_index.strengthen | 349 |
| abstract_inverted_index.vegetation | 125 |
| abstract_inverted_index.Conclusions | 155 |
| abstract_inverted_index.Elimination | 183 |
| abstract_inverted_index.appropriate | 193, 227, 360, 376 |
| abstract_inverted_index.brightness, | 123 |
| abstract_inverted_index.combination | 129 |
| abstract_inverted_index.communities | 307 |
| abstract_inverted_index.disparities | 313 |
| abstract_inverted_index.elimination | 29, 166 |
| abstract_inverted_index.especially, | 354 |
| abstract_inverted_index.information | 371 |
| abstract_inverted_index.insecticide | 22 |
| abstract_inverted_index.probability | 149 |
| abstract_inverted_index.resolutions | 283 |
| abstract_inverted_index.strategies. | 196, 230 |
| abstract_inverted_index.sub-Saharan | 12 |
| abstract_inverted_index.visualizing | 289 |
| abstract_inverted_index.availability | 242 |
| abstract_inverted_index.geographical | 380 |
| abstract_inverted_index.intervention | 374 |
| abstract_inverted_index.Georeferenced | 87 |
| abstract_inverted_index.computational | 252 |
| abstract_inverted_index.heterogeneity | 291 |
| abstract_inverted_index.interventions | 361 |
| abstract_inverted_index.socioeconomic | 247, 312 |
| abstract_inverted_index.administrative | 239 |
| abstract_inverted_index.environmental, | 59, 244 |
| abstract_inverted_index.interventions. | 49 |
| abstract_inverted_index.neighbourhoods. | 295 |
| abstract_inverted_index.Satellite-driven | 118 |
| abstract_inverted_index.disproportionate | 261 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| citation_normalized_percentile.value | 0.08578089 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |