Fine-Tuned Llama for Multilingual Text-to-Text Coreference Resolution Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48448/y1p8-qm18
This paper describes our approach to the CRAC 2025 Shared Task on Multilingual Coreference Resolution. We compete in the LLM track, where the systems are limited to generative text-to-text approaches. Our system is based on Llama 3.1-8B, fine-tuned to tag the document with coreference annotations. We have made one significant modification to the text format provided by the organizers: The model relies on the syntactic head for mention span representation. Additionally, we use joint pre-training, and we train the model to generate empty nodes. We provide an in-depth analysis of the performance of our models, which reveals several implementation problems. Although our system ended up in last place, we achieved the best performance on 10 datasets out of 22 within the track. By fixing the discovered problems in the post-evaluation phase, we improved our results substantially, outperforming all the systems in the LLM track and even some unconstrained track systems.
Related Topics
- Type
- other
- Landing Page
- https://doi.org/10.48448/y1p8-qm18
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106847480
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106847480Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48448/y1p8-qm18Digital Object Identifier
- Title
-
Fine-Tuned Llama for Multilingual Text-to-Text Coreference ResolutionWork title
- Type
-
otherOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-25Full publication date if available
- Authors
-
Association for Computational Linguistics 2025List of authors in order
- Landing page
-
https://doi.org/10.48448/y1p8-qm18Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48448/y1p8-qm18Direct OA link when available
- Concepts
-
Coreference, Computer science, Artificial intelligence, Task (project management), Natural language processing, Generative grammar, Resolution (logic), Joint (building), Training set, Track (disk drive), Head (geology), Generative model, Machine learning, Task analysis, Language model, Structured prediction, Span (engineering), Discriminative modelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106847480 |
|---|---|
| doi | https://doi.org/10.48448/y1p8-qm18 |
| ids.doi | https://doi.org/10.48448/y1p8-qm18 |
| ids.openalex | https://openalex.org/W7106847480 |
| fwci | |
| type | other |
| title | Fine-Tuned Llama for Multilingual Text-to-Text Coreference Resolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C28076734 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9715749621391296 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q63087 |
| concepts[0].display_name | Coreference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8551696538925171 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6902992129325867 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6775925755500793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6507432460784912 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C39890363 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5594608783721924 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[5].display_name | Generative grammar |
| concepts[6].id | https://openalex.org/C138268822 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5368044972419739 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[6].display_name | Resolution (logic) |
| concepts[7].id | https://openalex.org/C18555067 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5174639821052551 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[7].display_name | Joint (building) |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46453720331192017 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C89992363 |
| concepts[9].level | 2 |
| concepts[9].score | 0.462985634803772 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[9].display_name | Track (disk drive) |
| concepts[10].id | https://openalex.org/C2780312720 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42834988236427307 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5689100 |
| concepts[10].display_name | Head (geology) |
| concepts[11].id | https://openalex.org/C167966045 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3551815152168274 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[11].display_name | Generative model |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2954264283180237 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C175154964 |
| concepts[13].level | 3 |
| concepts[13].score | 0.29412785172462463 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[13].display_name | Task analysis |
| concepts[14].id | https://openalex.org/C137293760 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2702753245830536 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[14].display_name | Language model |
| concepts[15].id | https://openalex.org/C22367795 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2597981095314026 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7625208 |
| concepts[15].display_name | Structured prediction |
| concepts[16].id | https://openalex.org/C2778753569 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2525843679904938 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1960395 |
| concepts[16].display_name | Span (engineering) |
| concepts[17].id | https://openalex.org/C97931131 |
| concepts[17].level | 2 |
| concepts[17].score | 0.25112003087997437 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[17].display_name | Discriminative model |
| keywords[0].id | https://openalex.org/keywords/coreference |
| keywords[0].score | 0.9715749621391296 |
| keywords[0].display_name | Coreference |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6775925755500793 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/generative-grammar |
| keywords[2].score | 0.5594608783721924 |
| keywords[2].display_name | Generative grammar |
| keywords[3].id | https://openalex.org/keywords/resolution |
| keywords[3].score | 0.5368044972419739 |
| keywords[3].display_name | Resolution (logic) |
| keywords[4].id | https://openalex.org/keywords/joint |
| keywords[4].score | 0.5174639821052551 |
| keywords[4].display_name | Joint (building) |
| keywords[5].id | https://openalex.org/keywords/training-set |
| keywords[5].score | 0.46453720331192017 |
| keywords[5].display_name | Training set |
| keywords[6].id | https://openalex.org/keywords/track |
| keywords[6].score | 0.462985634803772 |
| keywords[6].display_name | Track (disk drive) |
| language | |
| locations[0].id | doi:10.48448/y1p8-qm18 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407053148 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Underline Science Inc. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48448/y1p8-qm18 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Association for Computational Linguistics 2025 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Association for Computational Linguistics 2025 |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48448/y1p8-qm18 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Fine-Tuned Llama for Multilingual Text-to-Text Coreference Resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:12:24.556248 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48448/y1p8-qm18 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407053148 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Underline Science Inc. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48448/y1p8-qm18 |
| primary_location.id | doi:10.48448/y1p8-qm18 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407053148 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Underline Science Inc. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48448/y1p8-qm18 |
| publication_date | 2025-10-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.10 | 114 |
| abstract_inverted_index.22 | 118 |
| abstract_inverted_index.By | 122 |
| abstract_inverted_index.We | 15, 45, 84 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 17, 105, 127, 140 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.of | 89, 92, 117 |
| abstract_inverted_index.on | 11, 34, 62, 113 |
| abstract_inverted_index.to | 5, 26, 38, 51, 80 |
| abstract_inverted_index.up | 104 |
| abstract_inverted_index.we | 71, 76, 108, 131 |
| abstract_inverted_index.LLM | 19, 142 |
| abstract_inverted_index.Our | 30 |
| abstract_inverted_index.The | 59 |
| abstract_inverted_index.all | 137 |
| abstract_inverted_index.and | 75, 144 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 66 |
| abstract_inverted_index.one | 48 |
| abstract_inverted_index.our | 3, 93, 101, 133 |
| abstract_inverted_index.out | 116 |
| abstract_inverted_index.tag | 39 |
| abstract_inverted_index.the | 6, 18, 22, 40, 52, 57, 63, 78, 90, 110, 120, 124, 128, 138, 141 |
| abstract_inverted_index.use | 72 |
| abstract_inverted_index.2025 | 8 |
| abstract_inverted_index.CRAC | 7 |
| abstract_inverted_index.Task | 10 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.best | 111 |
| abstract_inverted_index.even | 145 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.head | 65 |
| abstract_inverted_index.last | 106 |
| abstract_inverted_index.made | 47 |
| abstract_inverted_index.some | 146 |
| abstract_inverted_index.span | 68 |
| abstract_inverted_index.text | 53 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.Llama | 35 |
| abstract_inverted_index.based | 33 |
| abstract_inverted_index.empty | 82 |
| abstract_inverted_index.ended | 103 |
| abstract_inverted_index.joint | 73 |
| abstract_inverted_index.model | 60, 79 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.track | 143, 148 |
| abstract_inverted_index.train | 77 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.Shared | 9 |
| abstract_inverted_index.fixing | 123 |
| abstract_inverted_index.format | 54 |
| abstract_inverted_index.nodes. | 83 |
| abstract_inverted_index.phase, | 130 |
| abstract_inverted_index.place, | 107 |
| abstract_inverted_index.relies | 61 |
| abstract_inverted_index.system | 31, 102 |
| abstract_inverted_index.track, | 20 |
| abstract_inverted_index.track. | 121 |
| abstract_inverted_index.within | 119 |
| abstract_inverted_index.3.1-8B, | 36 |
| abstract_inverted_index.compete | 16 |
| abstract_inverted_index.limited | 25 |
| abstract_inverted_index.mention | 67 |
| abstract_inverted_index.models, | 94 |
| abstract_inverted_index.provide | 85 |
| abstract_inverted_index.results | 134 |
| abstract_inverted_index.reveals | 96 |
| abstract_inverted_index.several | 97 |
| abstract_inverted_index.systems | 23, 139 |
| abstract_inverted_index.Although | 100 |
| abstract_inverted_index.achieved | 109 |
| abstract_inverted_index.analysis | 88 |
| abstract_inverted_index.approach | 4 |
| abstract_inverted_index.datasets | 115 |
| abstract_inverted_index.document | 41 |
| abstract_inverted_index.generate | 81 |
| abstract_inverted_index.improved | 132 |
| abstract_inverted_index.in-depth | 87 |
| abstract_inverted_index.problems | 126 |
| abstract_inverted_index.provided | 55 |
| abstract_inverted_index.systems. | 149 |
| abstract_inverted_index.describes | 2 |
| abstract_inverted_index.problems. | 99 |
| abstract_inverted_index.syntactic | 64 |
| abstract_inverted_index.discovered | 125 |
| abstract_inverted_index.fine-tuned | 37 |
| abstract_inverted_index.generative | 27 |
| abstract_inverted_index.Coreference | 13 |
| abstract_inverted_index.Resolution. | 14 |
| abstract_inverted_index.approaches. | 29 |
| abstract_inverted_index.coreference | 43 |
| abstract_inverted_index.organizers: | 58 |
| abstract_inverted_index.performance | 91, 112 |
| abstract_inverted_index.significant | 49 |
| abstract_inverted_index.Multilingual | 12 |
| abstract_inverted_index.annotations. | 44 |
| abstract_inverted_index.modification | 50 |
| abstract_inverted_index.text-to-text | 28 |
| abstract_inverted_index.Additionally, | 70 |
| abstract_inverted_index.outperforming | 136 |
| abstract_inverted_index.pre-training, | 74 |
| abstract_inverted_index.unconstrained | 147 |
| abstract_inverted_index.implementation | 98 |
| abstract_inverted_index.substantially, | 135 |
| abstract_inverted_index.post-evaluation | 129 |
| abstract_inverted_index.representation. | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |