Finite element analysis of a nonlinear heat Equation with damping and pumping effects Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.10210
We study the following nonlinear heat equation with damping and pumping effects (a reaction-diffusion equation) posed on a bounded simply connected convex domain $Ω\subset \mathbb{R}^d$, $d \geq 1$ with Lipschitz boundary $\partialΩ$: $$ \frac{\partial u(t)}{\partial t} - νΔu(t) + α|u(t)|^{p-2}u(t) - \sum_{\ell=1}^M β_{\ell} |u(t)|^{q_{\ell}-2}u(t) = f(t), \quad t>0, $$ subject to homogeneous Dirichlet boundary conditions and the initial condition $u(0)=u_0$, where $2 \leq p < \infty$ and $2 \leq q_{\ell} < p$ for $1 \leq \ell \leq M$. For $u_0 \in L^2(Ω)$ and $f \in L^2(0,T;H^{-1}(Ω))$, we establish the existence and uniqueness of a weak solution for all dimensions $d \in \mathbb{N}$ and damping exponents $2 \leq p < \infty$. Furthermore, for $u_0 \in H^2(Ω) \cap H_0^1(Ω)$ and $f \in H^1(0,T;H^1(Ω))$, we obtain regularity results: these hold for every $2 \leq p < \infty$ when $1 \leq d \leq 4$, and for $2 \leq p \leq \frac{2d-6}{d-4}$ when $d \geq 5$. We further conduct finite element analysis using conforming, nonconforming, and discontinuous Galerkin methods, deriving a priori error estimates for both semi- and fully discrete schemes, supported by numerical results. To relax restrictions on $p$ in the semidiscrete analysis, we use appropriate projection/interpolation operators: the Ritz projection in the conforming case ($2 \le p \le \frac{2d}{d-2}$), the Scott-Zhang interpolation for $\frac{2d}{d-2} < p \le \frac{2d-6}{d-4}$, the Clément interpolation in the nonconforming setting, and the $L^2$-projection in the DG framework. In the fully discrete case, error estimates hold for the above $p$-range under $u_0 \in D(A^{3/2})$ and $f \in H^1(0,T;H^1(Ω))$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.10210
- https://arxiv.org/pdf/2510.10210
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417100135
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417100135Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.10210Digital Object Identifier
- Title
-
Finite element analysis of a nonlinear heat Equation with damping and pumping effectsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-11Full publication date if available
- Authors
-
Wasim Akram, Manil T. MohanList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.10210Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.10210Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.10210Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417100135 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.10210 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.10210 |
| ids.openalex | https://openalex.org/W4417100135 |
| fwci | |
| type | preprint |
| title | Finite element analysis of a nonlinear heat Equation with damping and pumping effects |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.10210 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.10210 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.10210 |
| locations[1].id | doi:10.48550/arxiv.2510.10210 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.10210 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102023195 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-7445-836X |
| authorships[0].author.display_name | Wasim Akram |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Akram, Wasim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046452698 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3197-1136 |
| authorships[1].author.display_name | Manil T. Mohan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohan, Manil T. |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.10210 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | Finite element analysis of a nonlinear heat Equation with damping and pumping effects |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-08T09:52:01.887274 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.10210 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.10210 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.10210 |
| primary_location.id | pmh:oai:arXiv.org:2510.10210 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.10210 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.10210 |
| publication_date | 2025-10-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 38 |
| abstract_inverted_index.- | 36, 40 |
| abstract_inverted_index.= | 44 |
| abstract_inverted_index.a | 17, 93, 165 |
| abstract_inverted_index.d | 137 |
| abstract_inverted_index.p | 63, 107, 131, 144, 203, 212 |
| abstract_inverted_index.$$ | 32, 48 |
| abstract_inverted_index.$1 | 73, 135 |
| abstract_inverted_index.$2 | 61, 67, 105, 129, 142 |
| abstract_inverted_index.$d | 25, 99, 148 |
| abstract_inverted_index.$f | 83, 118, 246 |
| abstract_inverted_index.(a | 12 |
| abstract_inverted_index.1$ | 27 |
| abstract_inverted_index.DG | 227 |
| abstract_inverted_index.In | 229 |
| abstract_inverted_index.To | 180 |
| abstract_inverted_index.We | 0, 151 |
| abstract_inverted_index.by | 177 |
| abstract_inverted_index.in | 185, 197, 218, 225 |
| abstract_inverted_index.of | 92 |
| abstract_inverted_index.on | 16, 183 |
| abstract_inverted_index.p$ | 71 |
| abstract_inverted_index.to | 50 |
| abstract_inverted_index.t} | 35 |
| abstract_inverted_index.we | 86, 121, 189 |
| abstract_inverted_index.$p$ | 184 |
| abstract_inverted_index.($2 | 201 |
| abstract_inverted_index.4$, | 139 |
| abstract_inverted_index.5$. | 150 |
| abstract_inverted_index.For | 78 |
| abstract_inverted_index.M$. | 77 |
| abstract_inverted_index.\in | 80, 84, 100, 113, 119, 243, 247 |
| abstract_inverted_index.\le | 202, 204, 213 |
| abstract_inverted_index.all | 97 |
| abstract_inverted_index.and | 9, 55, 66, 82, 90, 102, 117, 140, 160, 172, 222, 245 |
| abstract_inverted_index.for | 72, 96, 111, 127, 141, 169, 209, 237 |
| abstract_inverted_index.the | 2, 56, 88, 186, 194, 198, 206, 215, 219, 223, 226, 230, 238 |
| abstract_inverted_index.use | 190 |
| abstract_inverted_index.$u_0 | 79, 112, 242 |
| abstract_inverted_index.< | 64, 70, 108, 132, 211 |
| abstract_inverted_index.Ritz | 195 |
| abstract_inverted_index.\cap | 115 |
| abstract_inverted_index.\ell | 75 |
| abstract_inverted_index.\geq | 26, 149 |
| abstract_inverted_index.\leq | 62, 68, 74, 76, 106, 130, 136, 138, 143, 145 |
| abstract_inverted_index.both | 170 |
| abstract_inverted_index.case | 200 |
| abstract_inverted_index.heat | 5 |
| abstract_inverted_index.hold | 126, 236 |
| abstract_inverted_index.weak | 94 |
| abstract_inverted_index.when | 134, 147 |
| abstract_inverted_index.with | 7, 28 |
| abstract_inverted_index.\quad | 46 |
| abstract_inverted_index.above | 239 |
| abstract_inverted_index.case, | 233 |
| abstract_inverted_index.error | 167, 234 |
| abstract_inverted_index.every | 128 |
| abstract_inverted_index.f(t), | 45 |
| abstract_inverted_index.fully | 173, 231 |
| abstract_inverted_index.posed | 15 |
| abstract_inverted_index.relax | 181 |
| abstract_inverted_index.semi- | 171 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 125 |
| abstract_inverted_index.under | 241 |
| abstract_inverted_index.using | 157 |
| abstract_inverted_index.where | 60 |
| abstract_inverted_index.convex | 21 |
| abstract_inverted_index.domain | 22 |
| abstract_inverted_index.finite | 154 |
| abstract_inverted_index.obtain | 122 |
| abstract_inverted_index.priori | 166 |
| abstract_inverted_index.simply | 19 |
| abstract_inverted_index.H^2(Ω) | 114 |
| abstract_inverted_index.\infty$ | 65, 133 |
| abstract_inverted_index.bounded | 18 |
| abstract_inverted_index.conduct | 153 |
| abstract_inverted_index.damping | 8, 103 |
| abstract_inverted_index.effects | 11 |
| abstract_inverted_index.element | 155 |
| abstract_inverted_index.further | 152 |
| abstract_inverted_index.initial | 57 |
| abstract_inverted_index.pumping | 10 |
| abstract_inverted_index.subject | 49 |
| abstract_inverted_index.t>0, | 47 |
| abstract_inverted_index.Clément | 216 |
| abstract_inverted_index.Galerkin | 162 |
| abstract_inverted_index.L^2(Ω)$ | 81 |
| abstract_inverted_index.\infty$. | 109 |
| abstract_inverted_index.analysis | 156 |
| abstract_inverted_index.boundary | 30, 53 |
| abstract_inverted_index.deriving | 164 |
| abstract_inverted_index.discrete | 174, 232 |
| abstract_inverted_index.equation | 6 |
| abstract_inverted_index.methods, | 163 |
| abstract_inverted_index.q_{\ell} | 69 |
| abstract_inverted_index.results. | 179 |
| abstract_inverted_index.results: | 124 |
| abstract_inverted_index.schemes, | 175 |
| abstract_inverted_index.setting, | 221 |
| abstract_inverted_index.solution | 95 |
| abstract_inverted_index.νΔu(t) | 37 |
| abstract_inverted_index.$p$-range | 240 |
| abstract_inverted_index.Dirichlet | 52 |
| abstract_inverted_index.Lipschitz | 29 |
| abstract_inverted_index.analysis, | 188 |
| abstract_inverted_index.condition | 58 |
| abstract_inverted_index.connected | 20 |
| abstract_inverted_index.equation) | 14 |
| abstract_inverted_index.establish | 87 |
| abstract_inverted_index.estimates | 168, 235 |
| abstract_inverted_index.existence | 89 |
| abstract_inverted_index.exponents | 104 |
| abstract_inverted_index.following | 3 |
| abstract_inverted_index.nonlinear | 4 |
| abstract_inverted_index.numerical | 178 |
| abstract_inverted_index.supported | 176 |
| abstract_inverted_index.β_{\ell} | 42 |
| abstract_inverted_index.$Ω\subset | 23 |
| abstract_inverted_index.H_0^1(Ω)$ | 116 |
| abstract_inverted_index.conditions | 54 |
| abstract_inverted_index.conforming | 199 |
| abstract_inverted_index.dimensions | 98 |
| abstract_inverted_index.framework. | 228 |
| abstract_inverted_index.operators: | 193 |
| abstract_inverted_index.projection | 196 |
| abstract_inverted_index.regularity | 123 |
| abstract_inverted_index.uniqueness | 91 |
| abstract_inverted_index.$u(0)=u_0$, | 59 |
| abstract_inverted_index.D(A^{3/2})$ | 244 |
| abstract_inverted_index.Scott-Zhang | 207 |
| abstract_inverted_index.\mathbb{N}$ | 101 |
| abstract_inverted_index.appropriate | 191 |
| abstract_inverted_index.conforming, | 158 |
| abstract_inverted_index.homogeneous | 51 |
| abstract_inverted_index.Furthermore, | 110 |
| abstract_inverted_index.restrictions | 182 |
| abstract_inverted_index.semidiscrete | 187 |
| abstract_inverted_index.$\partialΩ$: | 31 |
| abstract_inverted_index.discontinuous | 161 |
| abstract_inverted_index.interpolation | 208, 217 |
| abstract_inverted_index.nonconforming | 220 |
| abstract_inverted_index.\frac{\partial | 33 |
| abstract_inverted_index.\mathbb{R}^d$, | 24 |
| abstract_inverted_index.nonconforming, | 159 |
| abstract_inverted_index.u(t)}{\partial | 34 |
| abstract_inverted_index.$\frac{2d}{d-2} | 210 |
| abstract_inverted_index.\sum_{\ell=1}^M | 41 |
| abstract_inverted_index.$L^2$-projection | 224 |
| abstract_inverted_index.\frac{2d-6}{d-4}$ | 146 |
| abstract_inverted_index.\frac{2d}{d-2}$), | 205 |
| abstract_inverted_index.H^1(0,T;H^1(Ω))$, | 120 |
| abstract_inverted_index.H^1(0,T;H^1(Ω))$. | 248 |
| abstract_inverted_index.\frac{2d-6}{d-4}$, | 214 |
| abstract_inverted_index.reaction-diffusion | 13 |
| abstract_inverted_index.α|u(t)|^{p-2}u(t) | 39 |
| abstract_inverted_index.L^2(0,T;H^{-1}(Ω))$, | 85 |
| abstract_inverted_index.|u(t)|^{q_{\ell}-2}u(t) | 43 |
| abstract_inverted_index.projection/interpolation | 192 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |