Firefly algorithm with multiple learning ability based on gender difference Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-09523-9
The Firefly Algorithm (FA), while effective for complex optimization, suffers from inherent limitations such as search oscillation and low convergence precision. To address these issues, a firefly algorithm with multiple learning ability based on gender difference (MLFA-GD) is proposed. Firstly, the algorithm evenly divides the randomly initialized population into male and female subgroups. Then a male firefly learning strategy which incorporated a partial attraction model combining with an escape mechanism, and a female firefly learning strategy guided by both the generalized centroid of the male subgroup and the global optimal individual are designed separately. Additionally, a random walk strategy is further incorporated to refine the optimization accuracy. Different from existing gender-based FA variants, male fireflies either fly toward brighter female fireflies or move away from weaker individuals to enhance exploration capability. Meanwhile, female fireflies update positions guided by two elite male individuals, effectively leveraging historical search information to improve exploitation capability. The performance is evaluated on 23 numerical functions, 30 CEC 2017 benchmark functions and an automatic test data generation problem. The experiment comparison results with six FA variants and ten popular meta heuristic algorithms confirm its enhanced search capability and significantly higher optimization precision, validating its effectiveness in balancing exploration and exploitation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-09523-9
- https://www.nature.com/articles/s41598-025-09523-9.pdf
- OA Status
- gold
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412928463
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412928463Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-09523-9Digital Object Identifier
- Title
-
Firefly algorithm with multiple learning ability based on gender differenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-04Full publication date if available
- Authors
-
Wenning Zhang, Chongyang Jiao, Qinglei ZhouList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-09523-9Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-09523-9.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-09523-9.pdfDirect OA link when available
- Concepts
-
Firefly algorithm, Computer science, Firefly protocol, Artificial intelligence, Machine learning, Algorithm, Biology, Zoology, Particle swarm optimizationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412928463 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-09523-9 |
| ids.doi | https://doi.org/10.1038/s41598-025-09523-9 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40759898 |
| ids.openalex | https://openalex.org/W4412928463 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000502 |
| mesh[0].descriptor_ui | D048888 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | physiology |
| mesh[0].descriptor_name | Fireflies |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000818 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Animals |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007858 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012737 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Sex Factors |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012727 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Sex Characteristics |
| mesh[8].qualifier_ui | Q000502 |
| mesh[8].descriptor_ui | D048888 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | physiology |
| mesh[8].descriptor_name | Fireflies |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008297 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Male |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005260 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Female |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000818 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Animals |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D007858 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D012737 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Sex Factors |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012727 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Sex Characteristics |
| mesh[16].qualifier_ui | Q000502 |
| mesh[16].descriptor_ui | D048888 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | physiology |
| mesh[16].descriptor_name | Fireflies |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000465 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Algorithms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000818 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Animals |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D007858 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Learning |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D012737 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Sex Factors |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D012727 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Sex Characteristics |
| type | article |
| title | Firefly algorithm with multiple learning ability based on gender difference |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 28400 |
| biblio.first_page | 28400 |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T10848 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Multi-Objective Optimization Algorithms |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C154982244 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7941959500312805 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5451844 |
| concepts[0].display_name | Firefly algorithm |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5832914113998413 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C107477482 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4656568169593811 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q22570039 |
| concepts[2].display_name | Firefly protocol |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.38107359409332275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3725453317165375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34543365240097046 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.18690577149391174 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C90856448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q431 |
| concepts[7].display_name | Zoology |
| concepts[8].id | https://openalex.org/C85617194 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[8].display_name | Particle swarm optimization |
| keywords[0].id | https://openalex.org/keywords/firefly-algorithm |
| keywords[0].score | 0.7941959500312805 |
| keywords[0].display_name | Firefly algorithm |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5832914113998413 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/firefly-protocol |
| keywords[2].score | 0.4656568169593811 |
| keywords[2].display_name | Firefly protocol |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.38107359409332275 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3725453317165375 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.34543365240097046 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.18690577149391174 |
| keywords[6].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-09523-9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-09523-9.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-09523-9 |
| locations[1].id | pmid:40759898 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40759898 |
| locations[2].id | pmh:oai:doaj.org/article:838e5686abac4fc9b03b5cd94441c845 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-31 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/838e5686abac4fc9b03b5cd94441c845 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12322102 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12322102 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5000964523 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1035-4887 |
| authorships[0].author.display_name | Wenning Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I132586189 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhongyuan University of Technology, Zhengzhou, 450000, China |
| authorships[0].institutions[0].id | https://openalex.org/I132586189 |
| authorships[0].institutions[0].ror | https://ror.org/0360zcg91 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I132586189 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhongyuan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenning Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Zhongyuan University of Technology, Zhengzhou, 450000, China |
| authorships[1].author.id | https://openalex.org/A5034243614 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chongyang Jiao |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450000, China |
| authorships[1].affiliations[1].raw_affiliation_string | State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450000, China. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chongyang Jiao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450000, China, State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450000, China. |
| authorships[2].author.id | https://openalex.org/A5091337485 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1156-1108 |
| authorships[2].author.display_name | Qinglei Zhou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[2].affiliations[0].raw_affiliation_string | Zhengzhou University, Zhengzhou, 450000, China |
| authorships[2].institutions[0].id | https://openalex.org/I38877650 |
| authorships[2].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhengzhou University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Qinglei Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zhengzhou University, Zhengzhou, 450000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-09523-9.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Firefly algorithm with multiple learning ability based on gender difference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2222304693, https://openalex.org/W1599691202, https://openalex.org/W4200439108, https://openalex.org/W2940563633, https://openalex.org/W2490269892, https://openalex.org/W2757862489, https://openalex.org/W2810756170, https://openalex.org/W2411884393, https://openalex.org/W2984874436, https://openalex.org/W2912808862 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-09523-9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-09523-9.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-09523-9 |
| primary_location.id | doi:10.1038/s41598-025-09523-9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-09523-9.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-09523-9 |
| publication_date | 2025-08-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2783827472, https://openalex.org/W2044587647, https://openalex.org/W2576324142, https://openalex.org/W2734693534, https://openalex.org/W4281784934, https://openalex.org/W2904614376, https://openalex.org/W3164793889, https://openalex.org/W3199500037, https://openalex.org/W3046849701, https://openalex.org/W3129734386, https://openalex.org/W2295939830, https://openalex.org/W2567500619, https://openalex.org/W2883271808, https://openalex.org/W4283721511, https://openalex.org/W4376867639, https://openalex.org/W4367682463, https://openalex.org/W2797485770, https://openalex.org/W3158643130, https://openalex.org/W3209420330, https://openalex.org/W4210476421, https://openalex.org/W4293216082, https://openalex.org/W4384129607, https://openalex.org/W2501439700, https://openalex.org/W2736831631, https://openalex.org/W2922190955, https://openalex.org/W3044535332, https://openalex.org/W4362512318, https://openalex.org/W4386401373, https://openalex.org/W2782513934, https://openalex.org/W4322614471, https://openalex.org/W2043843374, https://openalex.org/W6941211590, https://openalex.org/W2061438946, https://openalex.org/W883434633, https://openalex.org/W2232317135, https://openalex.org/W2738900493, https://openalex.org/W2919979744, https://openalex.org/W3014974411, https://openalex.org/W3154719286, https://openalex.org/W4206081481, https://openalex.org/W4387095893, https://openalex.org/W3104313545 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 25, 54, 61, 71, 95 |
| abstract_inverted_index.23 | 156 |
| abstract_inverted_index.30 | 159 |
| abstract_inverted_index.FA | 111, 177 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.an | 67, 165 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.by | 77, 137 |
| abstract_inverted_index.in | 198 |
| abstract_inverted_index.is | 37, 99, 153 |
| abstract_inverted_index.of | 82 |
| abstract_inverted_index.on | 33, 155 |
| abstract_inverted_index.or | 121 |
| abstract_inverted_index.to | 102, 127, 147 |
| abstract_inverted_index.CEC | 160 |
| abstract_inverted_index.The | 0, 151, 171 |
| abstract_inverted_index.and | 17, 50, 70, 86, 164, 179, 190, 201 |
| abstract_inverted_index.are | 91 |
| abstract_inverted_index.fly | 116 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.its | 186, 196 |
| abstract_inverted_index.low | 18 |
| abstract_inverted_index.six | 176 |
| abstract_inverted_index.ten | 180 |
| abstract_inverted_index.the | 40, 44, 79, 83, 87, 104 |
| abstract_inverted_index.two | 138 |
| abstract_inverted_index.2017 | 161 |
| abstract_inverted_index.Then | 53 |
| abstract_inverted_index.away | 123 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.data | 168 |
| abstract_inverted_index.from | 10, 108, 124 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.male | 49, 55, 84, 113, 140 |
| abstract_inverted_index.meta | 182 |
| abstract_inverted_index.move | 122 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.test | 167 |
| abstract_inverted_index.walk | 97 |
| abstract_inverted_index.with | 28, 66, 175 |
| abstract_inverted_index.(FA), | 3 |
| abstract_inverted_index.based | 32 |
| abstract_inverted_index.elite | 139 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.while | 4 |
| abstract_inverted_index.either | 115 |
| abstract_inverted_index.escape | 68 |
| abstract_inverted_index.evenly | 42 |
| abstract_inverted_index.female | 51, 72, 119, 132 |
| abstract_inverted_index.gender | 34 |
| abstract_inverted_index.global | 88 |
| abstract_inverted_index.guided | 76, 136 |
| abstract_inverted_index.higher | 192 |
| abstract_inverted_index.random | 96 |
| abstract_inverted_index.refine | 103 |
| abstract_inverted_index.search | 15, 145, 188 |
| abstract_inverted_index.toward | 117 |
| abstract_inverted_index.update | 134 |
| abstract_inverted_index.weaker | 125 |
| abstract_inverted_index.Firefly | 1 |
| abstract_inverted_index.ability | 31 |
| abstract_inverted_index.address | 22 |
| abstract_inverted_index.complex | 7 |
| abstract_inverted_index.confirm | 185 |
| abstract_inverted_index.divides | 43 |
| abstract_inverted_index.enhance | 128 |
| abstract_inverted_index.firefly | 26, 56, 73 |
| abstract_inverted_index.further | 100 |
| abstract_inverted_index.improve | 148 |
| abstract_inverted_index.issues, | 24 |
| abstract_inverted_index.optimal | 89 |
| abstract_inverted_index.partial | 62 |
| abstract_inverted_index.popular | 181 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.suffers | 9 |
| abstract_inverted_index.Firstly, | 39 |
| abstract_inverted_index.brighter | 118 |
| abstract_inverted_index.centroid | 81 |
| abstract_inverted_index.designed | 92 |
| abstract_inverted_index.enhanced | 187 |
| abstract_inverted_index.existing | 109 |
| abstract_inverted_index.inherent | 11 |
| abstract_inverted_index.learning | 30, 57, 74 |
| abstract_inverted_index.multiple | 29 |
| abstract_inverted_index.problem. | 170 |
| abstract_inverted_index.randomly | 45 |
| abstract_inverted_index.strategy | 58, 75, 98 |
| abstract_inverted_index.subgroup | 85 |
| abstract_inverted_index.variants | 178 |
| abstract_inverted_index.(MLFA-GD) | 36 |
| abstract_inverted_index.Algorithm | 2 |
| abstract_inverted_index.Different | 107 |
| abstract_inverted_index.accuracy. | 106 |
| abstract_inverted_index.algorithm | 27, 41 |
| abstract_inverted_index.automatic | 166 |
| abstract_inverted_index.balancing | 199 |
| abstract_inverted_index.benchmark | 162 |
| abstract_inverted_index.combining | 65 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.evaluated | 154 |
| abstract_inverted_index.fireflies | 114, 120, 133 |
| abstract_inverted_index.functions | 163 |
| abstract_inverted_index.heuristic | 183 |
| abstract_inverted_index.numerical | 157 |
| abstract_inverted_index.positions | 135 |
| abstract_inverted_index.proposed. | 38 |
| abstract_inverted_index.variants, | 112 |
| abstract_inverted_index.Meanwhile, | 131 |
| abstract_inverted_index.algorithms | 184 |
| abstract_inverted_index.attraction | 63 |
| abstract_inverted_index.capability | 189 |
| abstract_inverted_index.comparison | 173 |
| abstract_inverted_index.difference | 35 |
| abstract_inverted_index.experiment | 172 |
| abstract_inverted_index.functions, | 158 |
| abstract_inverted_index.generation | 169 |
| abstract_inverted_index.historical | 144 |
| abstract_inverted_index.individual | 90 |
| abstract_inverted_index.leveraging | 143 |
| abstract_inverted_index.mechanism, | 69 |
| abstract_inverted_index.population | 47 |
| abstract_inverted_index.precision, | 194 |
| abstract_inverted_index.precision. | 20 |
| abstract_inverted_index.subgroups. | 52 |
| abstract_inverted_index.validating | 195 |
| abstract_inverted_index.capability. | 130, 150 |
| abstract_inverted_index.convergence | 19 |
| abstract_inverted_index.effectively | 142 |
| abstract_inverted_index.exploration | 129, 200 |
| abstract_inverted_index.generalized | 80 |
| abstract_inverted_index.individuals | 126 |
| abstract_inverted_index.information | 146 |
| abstract_inverted_index.initialized | 46 |
| abstract_inverted_index.limitations | 12 |
| abstract_inverted_index.oscillation | 16 |
| abstract_inverted_index.performance | 152 |
| abstract_inverted_index.separately. | 93 |
| abstract_inverted_index.exploitation | 149 |
| abstract_inverted_index.gender-based | 110 |
| abstract_inverted_index.incorporated | 60, 101 |
| abstract_inverted_index.individuals, | 141 |
| abstract_inverted_index.optimization | 105, 193 |
| abstract_inverted_index.Additionally, | 94 |
| abstract_inverted_index.effectiveness | 197 |
| abstract_inverted_index.exploitation. | 202 |
| abstract_inverted_index.optimization, | 8 |
| abstract_inverted_index.significantly | 191 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5000964523 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I132586189 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile.value | 0.14555987 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |